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We test a class of holographic models for the very early universe against cosmological observations
and find that they are competitive to the standard ΛCDM model of cosmology. These models are
based on three dimensional perturbative super-renormalizable Quantum Field Theory (QFT), and
while they predict a different power spectrum from the standard power-law used in ΛCDM, they
still provide an excellent fit to data (within their regime of validity). By comparing the Bayesian
evidence for the models, we find that ΛCDM does a better job globally, while the holographic
models provide a (marginally) better fit to data without very low multipoles (i.e. l . 30), where
the dual QFT becomes non-perturbative. Observations can be used to exclude some QFT models,
while we also find models satisfying all phenomenological constraints: the data rules out the dual
theory being Yang-Mills theory coupled to fermions only, but allows for Yang-Mills theory coupled
to non-minimal scalars with quartic interactions. Lattice simulations of 3d QFT’s can provide
non-perturbative predictions for large-angle statistics of the cosmic microwave background, and
potentially explain its apparent anomalies.

Observations of the cosmic microwave background
(CMB) offer a unique window into the very early Uni-
verse and Planck scale physics. The standard model of
cosmology, the so-called ΛCDM model, provides an ex-
cellent fit to observational data with just six parameter.
Four of these parameters describe the composition and
evolution of the Universe, while the other two are linked
with the physics of the very early Universe. These two
parameters, the tilt ns and and the amplitude ∆2

0(q∗),
parameterize the power spectrum of primordial curvature
perturbations,

∆2
R(q) = ∆2

0(q∗)

(
q

q∗

)ns−1

, (1)

where q∗, the pivot, is an an arbitrary reference scale.
This form of the power spectrum is a good approximation
for slow-roll inflationary models and has the ability to
fit the CMB data well. Indeed, a near-power-law scalar
power spectrum may be considered as a success of the
theory of cosmic inflation.

The theory of inflation is an effective theory. It is
based on gravity coupled to (appropriate) matter pertur-
batively quantized around an accelarating FLRW back-
ground. At sufficiently early times the curvature of the
FLRW spacetime becomes large and the perturbative
treatment is expected to break down – in this regime
we would need a full-fledged theory of quantum gravity.
One of the deepest insights about quantum gravity that
emerged in recent times is that it is expected to be holo-
graphic [1–3], meaning that there should be an equivalent

description of the bulk physics using a quantum field the-
ory with no gravity in one dimension less. One may thus
seek to use holography to model the very early Universe.

Holographic dualities were originally developed for
spacetimes with negative cosmological constant (the
AdS/CFT duality) [3] and soon afterwards the exten-
sion to de Sitter and cosmology was considered [4–8].
In this context, the statement of the duality is that the
partition function of the dual QFT computes the wave-
function of the universe [8] and using this wavefunction
cosmological observables may be obtained. Alternatively,
[9–13], one may use the Domain-wall/Cosmology corre-
spondence [14]. The two approaches are equivalent [15].

Holography offers a new framework that can accommo-
date conventional inflation but also leads to qualitatively
new models for the very early universe. While conven-
tional inflation corresponds to a strongly coupled QFT
[16–32], the new models are associated with a weakly cou-
pled QFT. These models correspond to a non-geometric
bulk, and yet holography allows us to compute the pre-
dictions for the cosmological observables. We emphasise
that the application of holography to cosmology is con-
jectural, the theoretical validity of such dualities is still
open and different authors approach the topic in different
ways. Here we seek to test these ideas against observa-
tions.

A class of non-geometric models were introduced in [9]
and their prediction have been worked out in [9–13, 33,
34]. These models are based on three dimensional super-
renormalizable QFT and they universally predict a scalar
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power spectrum of the form,

∆2
R(q) =

∆2
0

1 + (gq∗/q) ln |q/βgq∗|+O(gq∗/q)2
, (2)

where g is related to the coupling constant of the dual
QFT, while β depends on the parameters of the dual
QFT (see below).

The form of the power spectrum in (2) is distinctly
different from (1)1. Since these are qualitatively differ-
ent parametrizations, one may ask which of the two is
preferred by the data. Note that this question is a pri-
ori independent of the underlying physical models that
produced (1) and (2). This question has already been
addressed for WMAP7 data [37] in [35, 38] and it was
found that while the data mildly favour ΛCDM, it was
insufficient to definitively discriminate between the two
cases. Since then, the Planck mission has released its
data [39] and it is now time to revisit this issue. We will
present the main conclusions of the fit to Planck data
here, referring to [40] for a more detailed discussion.

On the theoretical side, there has also been significant
progress since [35]. While the form of (2) is universally
fixed, the precise relation between g and β and the pa-
rameters of the dual QFT requires a 2-loop computation,
which has now been carried out in [41]. We can thus not
only check whether (2) is compatible with CMB data,
but also use the data to do a model selection.

Theory.— Following [9], we consider the dual QFT
to be SU(N) gauge theory coupled to scalars ΦM and
fermions ψL, where M,L are flavor indices. The action
is given by

S =
1

g2
YM

∫
d3x tr

[
1

2
FijF

ij + (DΦ)2 + 2ψ̄D/ψ

+2
√

2µ · (Φψ̄ψ) +
1

6
λ · Φ4

]
, (3)

where all fields, ϕ = ϕaT a, are in the adjoint of SU(N)
and trT aT b = 1

2δ
ab. Fij is the Yang-Mills field strength,

and D is a gauge covariant derivative. We use the short-
hand notation (DΦ)2 = δM1M2DiΦM1DiΦM2 , ψ̄D/ ψ =
δL1L2 ψ̄

L1γiDiψL2 , µ · (Φψ̄ψ) ≡ µML1L2ΦM ψ̄L1ψL2 and
λ · Φ4 ≡ λM1M2M3M4

ΦM1ΦM2ΦM3ΦM4 .
The holographic dictionary relates the scalar and ten-

sor power spectra to the 2-point function of the energy-
momentum tensor Tij . For the scalar power spectrum,

∆2
R(q) =

1

4π2N2f(g2
eff)

, (4)

1 For small enough g, one may rewrite (2) in the form (1) with
momentum dependent ns(q). However, as discussed [9, 35], the
momentum dependence of ns(q) is qualitatively different from
that of slow-roll inflationary models [36].

where g2
eff(q) ≡ g2

YMN/q is the effective dimensionless ’t
Hooft coupling constant, q is the magnitude of the mo-
mentum ~q and f(g2

eff) is extracted from the momentum
space 2-point of function of the trace of the energy mo-
mentum tensor, 〈T ii (~p)T

j
j (~q)〉 = (2π)3δ(~p+~q)q3N2f(g2

eff).
In perturbation theory,

f(g2
eff) = f0

[
1− f1 g

2
eff ln g2

eff + f2 g
2
eff +O(g4

eff)
]
. (5)

The function f0 is determined by a 1-loop computation,
while f1 and f2 come from 2-loops. The presence of the
logarithm is due to UV and IR divergences in the compu-
tation of the 2-point function of the energy momentum
tensor. A detailed derivation of (4) may be found in
[10, 35]. Following [35], (2) and (4-5) match if:

gq∗ = f1g
2
YMN, ln

1

β
=
f2

f1
+ ln |f1|,∆2

0 =
1

4π2N2f0
. (6)

So, a universal prediction of these class of theories is the
power spectrum (2), independent of the details of the
2-loop computation2.

The 1-loop computation was done in [9, 10] and we here
report the result of the 2-loop computation [41] – a sum-
mary of the computation is provided in the appendix..
The final result is

f0 =
1

64
N(B), N(B) = 1 +

∑
M

(1− 8ξM )2 (7)

f1 = − 4

3π2

1

N(B)

(
Nψ − 2 + 2NΦ +

1

2
µ2 − 48 ΣΦ

)
,(8)

lnβ = ln
1

|g|
− a0

f1
− 64/π2

f1N(B)
ΣΦ ln

Nf1

g
(9)

where NΦ and Nψ are the total number of scalars and
fermions, and

a0 = − 1

24π2N(B)

[
16 + 3π2 − 56Nψ − 4

∑
M

µ2
MM +∑

M

3(8ξM − 1)(8
(
π2 − 16

)
ξM − 3π2 + 112 + 2µ2

MM )

+π2
∑

M1,M2

λM1M1M2M2
(8ξM1

− 1) (8ξM2
− 1)

]
,

ΣΦ =
∑
M

ξ2
M

(
2 +

1

2
µ2
MM

)
,

where µ2
M1M2

=
∑
L1,L2

µM1L1L2
µM2L2L1

, ξM is the non-

minimality parameter3 and summations over M(L) are
over scalars (fermions).

2 This assumes f1 6= 0. A separate analysis is required, where
f1 = 0, e.g., for (3) without gauge fields and fermions.

3 Non-minimal scalars on a curved background have the coupling
1/(2g2YM)

∑
M

∫
ξMR(ΦM )2, where R is the curvature scalar,

and this term induces an “improvement term” to their energy
momentum tensor, Tij = (2/

√
g)(δS/δgij)|gij=δij , see [42].



3

Fitting to data.— We would like now to assess how well
a power spectrum of the form (2) fits the cosmological
data and compare with that of the conventional power-
law power spectrum. Recall that ΛCDM is parametrized
by six parameters, (Ωbh

2,Ωch
2, θ, τ,∆2

0, ns), where Ωbh
2

and Ωch
2 are the baryon and dark matter densities, θ

is the angular size of the sound horizon at recombi-
nation, τ is the the optical depth due to re-ionization
and ∆2

0, ns are the parameters entering in (1). To for-
malize the comparison, we define (following [35]) holo-
graphic cosmology (HC) as the model parametrized by
(Ωbh

2,Ωch
2, θ, τ,∆2

0, g, lnβ)4. This model has 7 param-
eters so in order to compare models with the same num-
ber of parameters we also consider ΛCDM with running
αs = dns/d ln q. Note that our aim here is to compare
empirical models, not the underlying physical models
that lead to them. If the data selects one of the two em-
pirical models, then this would falsify all physical models
that underlie the other model.

500 1000 1500 2000

1000

2000

3000

4000

5000

6000

l

l(
l+

1)
C

l /
2π

 [µ
K

2 ]

l(
l+

1)
C

l /
2π

 [µ
K

2 ]

Planck

Holographic
Cosmology

ΛCDM

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

● ●

●
●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*
**
***

*
**
*
*

*

*
*
*
*
**

*

**

*
*
*

*

*

*

***
*

*
*

*
*
*
*
**
*

*
*

*

**
*
*
*

*

*
*

*

*

*
**

*

*

*
*

*

0 500 1000 1500 2000

- 0.04

- 0.02

0.00

0.02

0.04

l

C
a
l
-

C
b
l


C
av

e
l

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

● ●

●
●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*
*****

*
**
*
*

*

*
*
*
*
**

*

**

*
*
*

*

*

*

***
*

*
*

*
*
*
*
***

*
*

*

***
*
*

*

*
*

*

*

*
**

*

*

*
*

*

0 500 1000 1500 2000

- 0.04

- 0.02

0.00

0.02

0.04

l

●

*

[C
a(

l)
 - 

C
P

la
nc

k(
l)

]/
C

av
e(

l)

0 10 20 30 40

500

1000

1500

2000

2500

3000

l

FIG. 1. Angular power spectrum of CMB temperature
anisotropies, comparing Planck 2015 data with best fit ΛCDM
(dotted/blue) and holographic cosmology (solid/red) models,
for l ≥ 30. Lower panel shows the relative residuals, where
the green shaded region indicates the 68% region of Planck
2015 data.

We analysed the data using CosmoMC [43–49]. We
ran both ΛCDM and HC with the same datasets, fit-
ting the models to the Planck 2015 data including lens-
ing [39, 50–55], as well as Baryonic Acoustic Oscillations

4 In [35] the parameter β was incorrectly assumed to be equal one.
We refitted the WMAP data and found that the global minimum
is at β = 3.777.

TABLE I. Upper part: Planck 2015+BAO+BKP mean pa-
rameters for holographic cosmology. Lower part: χ2 values for
fit with all multipoles and fit with l < 30 multipoles excluded.

HC 109∆2
0 g lnβ

all l 2.126+0.058
−0.058 −0.00703+0.00105

−0.00167 0.877+0.186
−0.239

l ≥ 30 2.044+0.072
−0.075 −0.01305+0.00452

−0.00345 1.014+0.206
−0.272

HC ΛCDM ΛCDM running

χ2 (all l) 11324.5 11319.9 11319.6
χ2(l ≥ 30) 824.0 824.5 823.5

(BAO) [56–63] and BICEP2-Keck-Planck (BKP) polar-
ization [64]. After CosmoMC had run to determine the
mean and errors in the parameters, we ran the minimizer
[65] within the code to determine the best fit parameters
and likelihood.

The Planck angular TT spectrum together with the
best fit curves and residuals for HC and ΛCDM are pre-
sented in Fig. 1. Notice that the difference between
ΛCDM and HC lies within the 68% region of Planck, with
the largest difference being at small multipoles. Very
similar results hold for the TE and EE spectra [40]. We
determined the best fit values for all parameters for HC,
ΛCDM and ΛCDM with running. Our values for the
parameters of ΛCDM and ΛCDM with running are in
agreement with those determined by the Planck team.
All common parameters of the three models are within
1σ of each other (with the notable exception of the opti-
cal depth τ [40]). We report the values of ∆0, g, lnβ and
χ2 in Table I (the list of all parameters can be found in
[40]). The χ2 of the fit indicates that HC is disfavoured
at about 2.2σ relative to ΛCDM with running, when we
consider all multipoles.

Relative to the WMAP fit in [35] the value of g has
decreased from −1.3× 10−3 to −7× 10−3. In Fig. 2, we
investigate how the value of g changes if we change the
range of multipoles that we consider. It is clear from the
plot that the value of g is compatible between WMAP
and Planck, if we keep the same multipoles. It is also
clear that the high l modes want to push g to lower neg-
ative values. Larger values of |g| indicate that the theory
may become non-perturbative at very low l and, as such,
the predictions of the model cannot be trusted in that
regime. We shall see below that this is supported by
model selection criteria. Therefore, we repeat the fit-
ting, excluding the l < 30 multipoles. The results for
∆0, g, lnβ and χ2 are tabulated in Table I. With this
data, all common parameters are now compatible with
each other [40]. The χ2 test shows that the three models
are now within 1σ.

The power spectrum for the tensors takes the same
form as (2) but with different values of g and β. We
fitted the data with this form of the power spectrum and
found that it is consistent with r = 0; the 2σ upper limit
on the tensor-to-scalar ratio is r < 0.125.
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FIG. 2. Plot of 1σ and 2σ regions in parameter space for
holographic cosmology g and ln(β) values for WMAP (blue,
right), Planck (red, middle), Planck with l < 30 values re-
moved (green, left), and Planck with l > 700 values ignored
(purple, dashed). We see that higher resolution data progres-
sively pushes g to lower negative values.

Bayesian Evidence.— In comparing different models,
one often uses information criteria such as the value of
χ2, which quantifies the goodness of a fit. We emphasise
that with “model” we mean the three empirical models
introduced above, ΛCDM, ΛCDM with running and HC.
What we really want to know, however, is what is the
probability for each of these models given the data. This
is obtained by computing the Bayesian Evidence.

As discussed in [35], if we assume flat priors for all pa-
rameters αM that define a given model, the Bayesian evi-
dence is given by E = 1

VolM

∫
dαML (αM), where L (αM)

is the likelihood and VolM is the volume of the region in
parameter space over which the prior probability distri-
bution is non-zero. The evidence may be computed either
by using CosmoMC or by MultiNest [66–68].

Note that the aim here is to compare empirical models
and we determined the priors from previous fits of the
same empirical models to data (as is common)5. We use
the priors in Table 4 of [35], except that the upper limit
of 100 θ is taken to be 1.05. The prior for the running
is taken to be |αs| ≤ 0.05. The priors for ns are the
asymmetric prior used in [35]: 0.92 ≤ ns ≤ 1. For the
prior for g we use variable range, gmin ≤ g < 0. This
prior is fixed by the requirement that perturbation the-
ory is valid. We will allow for the possibility that the
perturbative expansion is valid only for l > 30. We use
as a rough estimate for the validity of perturbation the-
ory that gq∗/q is sufficiently small, taking this to mean a
value between 0.20 and 1 at l = 306. This translates into

5 Had we focused on specific physical models we could use the
wavefunction of the universe to obtain corresponding theoretical
priors, see [18] for work in this direction.

6 The momenta and multipoles are related via q = l/rh, where
rh = 14.2 Gpc is the comoving radius of the last scattering sur-
face.

−0.009 < gmin < −0.45. The prior for β is fixed by using
the results from (our fit to) WMAP data. We use two sets
of priors: one coming from the 1σ range (0 ≤ lnβ ≤ 2)
and the other from the 2σ range (−0.2 ≤ lnβ ≤ 3.5).

The results for the Bayesian evidence are presented in
Fig. 3 for l ≥ 30, where 2-loop predictions (2) can be
trusted. As a guide [69], a difference lnE < 1 is insignif-
icant and 2.5 < lnE < 5 is strongly significant. We see
that the difference between evidence for ΛCDM and HC
predictions is insignificant, with marginal preference for
HC, depending on the choice of priors.

0.010 0.020 0.0300.015

453.0

453.5

454.0

454.5

-ln
 E

-

ΛCDM with running

ΛCDM

HC with large β range
HC with small β range

ming

FIG. 3. Bayesian Evidence using l ≥ 30 data only, where the
perturbative expansion (2) can be trusted. Error is indicated
by the shaded region around the lines.

Model selection.— We would like now to examine
whether we can use the data to rule out or in some of
the models described by (3). There are phenomenolog-
ical and theoretical constraints that we need to satisfy.
The phenomenological constraints are: the bound on the
tensor-to-scalar ratio, r ≤ 0.125, should be satisfied, and
the model should reproduce the observed values for the
amplitude ∆2

0 and lnβ. The theoretical prediction for
the r is [9, 10, 34],

r = 32
1 +

∑NΦ

M=1(1− 8ξM )2

1 + 2Nψ +NΦ
, (10)

and the theoretical predictions for ∆2
0 and lnβ are given

in (6-9). In deriving (2) we used a ’t Hooft large N ex-
pansion and perturbation theory in g2

eff . We thus need
to check that any solution of the phenomenological con-
straints is consistent with these theoretical assumptions.

There are a few universal properties of the 2-loop cor-
rection, gq∗/q ln |q/βgq∗|. This term vanishes at large q,
reflecting the fact that the QFTs we consider are super-
renormalizable. Its absolute value gradually increases till
it reaches the local maximum 1/eβ at q = eβ|g|q∗. At
lower values of l the 2-loop term changes sign and grows
very fast as we go to lower multipoles becoming equal to
one (same size as the 1-loop contribution) below l = 10.
Therefore, we should not trust these models below l ∼ 10.
In fact, one should even be cautious in using the 2-loop
approximation for l’s lower than 35. While the overall
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magnitude of the 2-loop term is small up until l = 10
this happens due to large cancellation between the f1

and the f2 term in (5). We will use as an indicator of the
reliability of perturbation theory the size of f1g

2
eff ln g2

eff .
Let us consider gauge theory coupled to a large num-

ber, NΦ, of non-mimimal scalars, all with the same non-
minimality parameter ξ and the same quartic coupling λ.
For sufficiently large NΦ, the scalar-to-tensor ratio (10)
becomes

r = 32(1− 8ξ)2 (11)

and the bound on r implies, |1 − 8ξ| ≤ 0.061, where
the equality holds when r = 0.12. Choosing a value of
ξ, then the observational values of ∆2

0 and lnβ give two
equations, which can always be solved to determine N
and NΦ. For example, if we choose ξ = 0.133, which
correspond to r = 0.12, and take λ = 1 the solution to
the two constraints is

N = 2995, NΦ = 23255. (12)

This solution satisfies the theoretical constraints: firstly,
N2 � NΦ, so the large N expansion is justified and
secondly, the effective coupling remains small for all mo-
menta seen by Planck, 3.3 × 10−4 ≤ g2

eff(q) ≤ 0.41. For
this solution however f1 ≈ −8(1−48ξ2)/(1−8ξ)2 ≈ −11
and f1g

2
eff ln g2

eff ≈ 1 when l = 35, so we should not trust
the perturbative expansion below around l ≈ 35.

Conclusions.— We showed that holographic models
based on three-dimensional perturbative QFT are capa-
ble of explaining the CMB data and are competitive to
ΛCDM model. However, at very low multipoles (roughly
l < 30), the perturbative expansion breaks down and
in this regime the prediction of the theory cannot be
trusted. The data are consistent with the dual theory
being gauge theory coupled to a large number of nearly
conformal scalars with a quartic interaction. It would
be interesting to further analyze these models in order
to extract other properties that may be testable against
observations. In particular, non-perturbative methods
(such as putting the dual QFT on a lattice) can be used
to reliably model the very low multipoles, which may po-
tentially explain the apparent large angle anomalies in
the CMB sky (e.g., [70]).
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Appendix: 〈TT 〉 at 2-loops

The holographic formula for the power spectrum reads,

∆2
R(q) = − q3

4π2

1

Im〈〈T (q)T (−q)〉〉
, (13)

where T = T ii is the trace of the energy momentum ten-
sor and the double bracket notation indicates that the
momentum conserving delta function (times (2π)3) has
been removed. The imaginary part in (13) is taken after
analytic continuation

q → −iq,N → −iN, (14)

where q is the magnitude of the momentum. This formula
was derived in [9] using the domain-wall/cosmology cor-
respondence and also follows from the wave-function of
the universe approach. There is a similar holographic for-
mula for the tensor power spectrum involving the trans-
verse traceless part of the 2-point function of Tij .

This class of theories we consider has the important
property that if one promotes g2

YM to a new field that
transforms appropriately under conformal transforma-
tion, the theory becomes conformally invariant [71, 72].
We say that the theory has a “generalized conformal
structure”. This is not a bona fide symmetry of the the-
ory but, nevertheless, controls many of its properties.
The generalised conformal structure implies that the 2-
point function of the energy momentum tensor, to leading
order in the large N limit (planar diagrams), is given by

〈〈T (q)T (−q)〉〉 = q3N2f(g2
eff), (15)

where g2
eff = g2

YMN/q is the effective dimensionless ’t
Hooft coupling constant and f(g2

eff) is function of g2
eff

[72]. The overall factor of q3 reflects the fact that the
energy momentum has dimension 3 in three dimensions
and the overall factor of N2 is because this is the lead-
ing order term in the large N limit. Under the analytic
continuation (14),

g2
eff(q)→ g2

eff(q), N2q3 → −iN2q3 (16)

and therefore for this class of theories,

∆2
R(q) =

1

4π2N2f(g2
eff )

, (17)
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which is the formula we used in the main text.

Perturbation theory is valid when g2
eff � 1. In the

perturbative regime, the function f(g2
eff) is given by

f(g2
eff) = f0

(
1− f1 g

2
eff ln g2

eff + f2 g
2
eff +O(g4

eff)
)
. (18)

The function f0 is determined by a 1-loop computation,
while f1 and f2 come from 2-loops. The presence of the
logarithm is due to UV and IR divergences in the compu-
tation of the 2-point function of the energy momentum
tensor.

The 1-loop computation was done in [9, 10] and we
summarize the 2-loop computation of [41] here. Since
this a gauge theory we first need to gauge fix. The gauged
fixed action is

S =
1

g2
YM

∫
d3x tr

[
1

2
FijF

ij + (∂iAi)
2 + 2∂ic̄Dic

+(DΦM )2 + 2ψ̄LDψL + 2
√

2µML1L2
ΦM ψ̄L1ψL2

+
1

6
λM1M2M3M4

ΦM1ΦM2ΦM3ΦM4

]
. (19)

where b, c is the ghost sector. The energy-momentum
tensor is obtained by coupling the theory to a background
metric gij and then using Tij = (2/

√
g)(δS/δgij)|gij=δij .

This procedure defines a unique energy momentum ten-
sor, except that there is a choice of how to couple the
scalars to gravity. One may include the non-minimal
coupling 1/(2g2

YM)
∑
M ξMR(ΦM )2 in the action, where

the sum is over all scalars and different scalars may have
a different ξM . The variation of this term contributes
an “improvement term” to the energy momentum ten-
sor. If ξM = 0 the scalar is a called a minimal scalar,
while if ξM = 1/8 it is a conformal scalar. The energy
momentum obtained in this fashion is given by

Tij = TAij + T g.f.ij + T ghij + Tψij + TΦ
ij + TYij , (20)

where the different terms denote, respectively, the con-
tribution of the gauge fields, the gauge-fixing term , the
ghost sector, the fermions, the scalars and the Yukawa

interactions. These are explicitly given by

TAij =
1

g2
YM

tr

[
FikFjk − δij

1

4
FklFkl

]
, (21)

T g.f.ij =
1

g2
YM

tr [Ai∂j (∂kAk) +Aj∂i (∂kAk)

−δij
(
Ak ∂k∂lAl +

1

2
(∂kAk)(∂lAl)

)]
,

T ghij =
1

g2
YM

tr [∂ic̄Djc+ ∂j c̄Dic− δij∂k c̄Dkc] ,

Tψij =
1

g2
YM

tr

[
1

2
ψ̄Lγ(i

↔
Dj) ψL − δij

1

2
ψ̄Lγk

↔
Dk ψL

]
,

TΦ
ij =

1

g2
YM

tr

[
DiΦMDjΦM − δij

(
1

2
(DΦM )2

+
1

4!
λM1M2M3M4

ΦM1ΦM2ΦM3ΦM4

)
+ ξM

(
δij∂

2 − ∂i∂j
)

(ΦM )2
]
,

TYij =
1

g2
YM

tr
[
−δij µML1L2ΦM ψ̄L1ψL2

]
.

The topology of the 2-loop diagrams that need to be
computed is given in Fig. 4. The 2-point function has a

FIG. 4. 2-loop diagrams contributing to 〈TT 〉. The blob in
the fourth diagram represents an insertion of a 1-loop self-
energy.

UV divergence that can be cancelled by the counterterm

aCT

∫
d3x
√
gR, (22)

where R is the curvature scalar of the background metric
gij , with appropriately chosen aCT . As usual, this pro-
cess introduces a renormalization scale µ, which leads to
scheme dependence. The correlator also has an IR diver-
gence (unless all scalars are minimal), which we regulated
with an IR cut-off, µ∗. This leads to the following result
for lnβ,

lnβ = ln
1

|g|
− a0

f1
−
(

ln
q∗
µ

+
64/π2

f1N(B)
ΣΦ ln

µ

µ∗

)
, (23)

where we have made use of the definition of g, gq∗ =
f1g

2
YMN . The renormalization scale µ is arbitrary and
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so is the pivot scale q∗. We fix this scheme dependence
by setting, µ = q∗. An alternative scheme is to set µ to
the (inverse of the) smallest scale in the data (i.e. equal
to 0.17 Mpc−1). We have checked that the results we
present in the main text are not sensitive to the choice of
scheme, except possibly at very low l’s. As argued in the
main text, this is precisely the regime where one should
not trust the perturbative computation. Regarding the
IR divergence now. It was argued in [73, 74] that su-
perrenormalizable theories with a dimensionful coupling
constant (as in our case) are non-perturbative IR finite,
with g2

YM providing the IR cut-off . We therefore set
µ∗ = cg2

YM, where c is a number that can only be deter-
mined non-perturbatively. This leads to our final formula
for lnβ,

lnβ = ln
1

|g|
− a0

f1
− 64/π2

f1N(B)
ΣΦ ln

Nf1

cg
(24)

In the main text we set c = 1 but we also checked that
the results do not change qualitatively if we change c.
An alternative way to deal with the IR issues is to get µ∗
equal to the (inverse of the) largest scale in the data (i.e.
1.4×10−4 Mpc−1). As in the case of scheme dependence,
we have checked that the results are not very sensitive to
how we treat µ∗, except possibly at very low ls.
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