

Data Preparation & Descriptive Statistics

(ver. 2.7)

Oscar Torres-Reyna

Data Consultant otorres@princeton.edu

http://dss.princeton.edu/training/

DET

Basic definitions...

For statistical analysis we think of *data* as a collection of different pieces of information or facts. These pieces of information are called variables. A *variable* is an identifiable piece of data containing one or more values. Those values can take the form of a number or text (which could be converted into number)

In the table below variables var1 thru var5 are a collection of seven values, 'id' is the identifier for each observation. This dataset has information for seven cases (in this case people, but could also be states, countries, etc) grouped into five variables.

id	var1	var2	var3	var4	var5
1	7.3	32.27	0.1	Yes	Male
2	8.28	40.68	0.56	No	Female
3	3.35	5.62	0.55	Yes	Female
4	4.08	62.8	0.83	Yes	Male
5	9.09	22.76	0.26	No	Female
6	8.15	90.85	0.23	Yes	Female
7	7.59	54.94	0.42	Yes	Male

Data structure...

For data analysis your data should have variables as columns and observations as rows. The first row should have the column headings. Make sure your dataset has *at least* one identifier (for example, individual id, family id, etc.)

id	var1	var2	var3	var4	var5	← First	row shoul	d have the	variable na	mes				
1	7.3	32.27	0.1	Yes	Male									
2	8.28	40.68	0.56	No	Female	Cross-sectional data								
3	3.35	5.62	0.55	Yes	Female									
4	4.08	62.8	0.83	Yes	Male									
5	9.09	22.76	0.26	No	Female									
6	8.15	90.85	0.23	Yes	Female									
7	7.59	54.94	0.42	Yes	Male									
↑						с ⁻	id	year	var1	var2	var3			
						_	1	2000	7	74.03	0.55			
						Group 1 -	1	2001	2	4.6	0.44			
At lea	st one ide	ntifier					1	2002	2	25.56	0.77			
							2	2000	7	59.52	0.05			
	Cr	oss-sectio	onal time s	eries data	a.	Group 2 -	2	2001	2	16.95	0.94			
	or panel data						2	2002	9	1.2	0.08			
							3	2000	9	85.85	0.5			
							3	2001	3	98.85	0.32			
							3	2002	3	69.2	0.76			

Data format (ASCII)...

ASCII (American Standard Code for Information Interchange). The most universally accepted format. Practically any statistical software can open/read these type of files. Available formats:

• Delimited. Data is separated by comma, tab or space. The most common extension is *.csv (comma-separated value). Another type of extensions are *.txt for tab-separated data and *.prn for space-separated data. Any statistical package can read these formats.

• Record form (or fixed). Data is structured by fixed blocks (for example, var1 in columns 1 to 5, var2 in column 6 to 8, etc). You will need a codebook and to write a program (either in Stata, SPSS or SAS) to read the data. Extensions for the datasets could be *.dat, *.txt. For data in this format no column headings is available.

Data formats (comma-separated)...

Comma-separated value (*.csv)

ID, Last Name, First Name, City, State, Gender, Student Status, Major, Country, Age, SAT, Average score (grade), Height (in), Newspaper readership (times/wk),...... 1.DOE01.JANE01.Los Angeles.California.Female.Graduate.Politics.US.30.2263.67.61.5..... 2, DOE02, JANE02, Sedona, Arizona, Female, Undergraduate, Math, US, 19, 2006, 63, 64, 7, 3, DOE01, JOE01, Elmira, New York, Male, Graduate, Math, U5, 26, 2221, 78, 73, 6, 4.DOE02.JOE02.Lackawana, New York, Male, Graduate, Econ, US, 33, 1716, 78, 68, 3, 5, DOE03, JOE03, Defiance, Ohio, Male, Graduate, Econ, US, 37, 1701, 65, 71, 6, 6, DOE04, JOE04, Tel Aviv, Israel, Male, Graduate, Econ, Israel, 25, 1786, 69, 67, 5, 7. DOED5, JOED5, Cimax, North Carolina, Male, Graduate, Politics, US, 39, 1577, 96, 70, 5,..... 8. DOE03, JANE03, Liberal, Kansas, Female, Undergraduate, Politics, US, 21, 1842, 87, 62, 5, 9. DOED4, JANED4, Montreal, Canada, Female, Undergraduate, Math, Canada, 18, 1813, 91, 62, 6, 10.DOE05. JANE05, New York, New York, Female, Graduate, Math, US, 33, 2041, 71, 66, 5, 11. DOE06. JOE06. Hot Coffe. Mississippi. Male. Undergraduate. Econ. US. 18. 1787. 82. 67. 3...... 12, DOE06, JANE06, Java, Virginia, Female, Graduate, Math, US, 38, 1513, 79, 59, 5...... 13. DOE07. JOE07. Varna. Bulgaria, Male, Graduate, Politics, Bulgaria, 30, 1637, 79, 63, 4, 14.DOE08.JOE08.Moscow.Russia.Male.Graduate.Politics.Russia.30.1512.70.75.6...... 15, DOE07, JANE07, Drunkard Creek, New York, Female, Undergraduate, Math. US, 21, 1338, 82, 64, 5..... 16, DOE08, JANE08, Mexican Hat, Utah, Female, Undergraduate, Econ, US, 18, 1821, 80, 63, 3, 17, DOE09, JANE09, Amsterdam, Holland, Female, Undergraduate, Math, Holland, 19, 1494, 75, 60, 3, %8, DOE10, JANE10, Mexico, Mexico, Female, Graduate, Politics, Mexico, 31, 2248, 95, 59, 4, 19, DOE11, JANE11, Caracas, Venezuela, Female, Undergraduate, Math, Venezuela, 18, 2252, 92, 68, 5, 20, DOE09, JOE09, San Juan, Puerto Rico, Male, Graduate, Politics, US, 33, 1923, 95, 63, 7, 21, DOE12, JANE12, Remote, Oregon, Female, Undergraduate, Econ, US, 19, 1727, 67, 62, 7, 22. DOE10, JOE10, New York, New York, Male, Undergraduate, Econ, US, 21, 1872, 82, 73, 4, 23, DOE13, JANE13, The X, Massachusetts . Female, Graduate, Politics, US, 25, 1767, 89, 68, 6, 24, DOE14, JANE14, Beijing, China, Female, Undergraduate, Math, China, 18, 1643, 79, 65, 6, 25, DOE11, JOE11, Stockholm, Sweden, Male, Undergraduate, Politics, Sweden, 19, 1919, 88, 64, 4,..... 26. DOE12, JOE12, Embarrass, Minnesota, Male, Graduate, Econ, US, 28, 1434, 96, 71, 4,..... 27. DOE13. JOE13. Intercourse, Pennsylvania, Male, Undergraduate, Math, US, 20, 2119, 88, 71, 5, 28, DOE15, JANE15, LOCO, OK lahoma, Female, Undergraduate, Econ, US, 20, 2309, 64, 68, 6, 29, DOE14, JOE14, Buenos Aires, Argentina, Male, Graduate, Politics, Argentina, 30, 2279, 85, 72, 3..... 30. DOE15, 30E15, Acme, Louisiana, Male, Undergraduate, Econ, US, 19, 1907, 79, 74, 3,.....

Data format (tab/space separated)...

Tab separated value (*.txt)

Space separated value (*.prn)

40	Last Name	First Name	city	state	Gender	Student	status	Major	Country	y age	SAL	Averag	e score	(grabe)	Height	t fault	Newspaper	readership (times/wk
1	00E01 JA	EO1 Los Angeles	Califor	nia	Fenale	Graduat	e	Politic	s	US	30	2263	67	61	5			
2	DOE02 JAI	EO2 Sedona Arizo	na Female	Underg	raduate	Math	US	19	2006	63	64	7						
3	DOE01 309	01 Elmira New Y	ork	Male	Graduat	te	Math	US	26	2221	78	73	6	8233				
4	DOE02 308	02 Lackawana	New Yor	¥ .	Male	Graduat	e	Econ	US	33	1716	78	68	3				
5	DOE03 306	03 Defiance	ohfo	Male	Graduat	te	Econ	US	37	1701	65	71	6					
6	DOE04 308	14 Tel Aviv	Israel	Male	Graduat	te	Econ	Israel	25	1786	69	67	5	(1223)				
7	DOE05 304	05 Cimax North	Carolina	Male	Graduat	te	Politic	5	US	39	1577	96	70	5				
8	DOED3 JA	203 Liberal Kansa	s Female	Undergr	aduate	Politic	5	US	21	1842	87	62	5					
9	DOE04 JAI	EO4 Montreal	Canada	Fettale	undergr	aduate	Math	Canada	18	1813	91.	62	6	20230				
10	DOE05 JAI	ED5 New York	New Yor	x	Fenale	Graduat	e	Math	US	33	2041	71	66	5				
11	DOE00 304	06 Hot Coffe	Mississ	ippi	Male	Undergr	aduate	Econ	US	18	1787	82	67	3				
12	00E06 JA	606 Java Virgi	nia	Fenale	Graduat	te	Math	US	38	1513	79	59	5					
13	DOE07 300	07 Varna Bulga	ria	Male	Graduat	e	Politic	5	Bulgar	18	30	1637	79	63	4			
14	00E08 309	08 Moscow Russi	a Male	Graduat	te .	Politic	3	Russia	30	1512	70	75	6	52				
15	DOE07 JA	207 Drunkard Cree	k wee yor	κ.	Fenale	Undergr	aduate	Math	US	21	1338	82	64	5				
16	DOE08 JA	EO8 Mexican Hat	utahi	Fenale	Undergr	aduate	Econ	US	18	1821	80	63	3					
17	DOE09 JA	E09 Amsterdam	Hoiliand	Fenale	Undergr	aduate	Math	Holland	19	1494	75	60	3					
18	DOELO JA	ELO MEXICO MEXIC	o Female	Graduat	te	POINTIC	5	MEX1C0	31	2248	95	59	4					
19	DOE11 JA	Ell Caracas Venez	uela	Fenale	undergr	aduate	Math	Venezue	la.	18	2252	92	68	5				
20	DOE09 308	19 San Juan	Puerto	R1C0	Male	Graduat	e	Pointic	5	US	33	1923	95	63	7			
21	DOE12 JA	El2 Remote Orego	n Female	Undergr	aduate	Econ	US	19	1727	67	62	7	122	12				
22	DOE10 304	10 New York	NEW YOR	κ.	Male	Undergr	aduate	Econ	US	4	1872	82	73	4				
23	DOE13 JA	ELS THE X Massa	chusetts	Fettale	Graduat	te	POINTIO	S.	US	25	1767	89	69	0				
24	DOE14 JA	E14 Benjing China	Fenale	Underg	aduate	Math	China	18	1643	79	65	6	125	1211				
25	DOE11 309	ll Stockholm	Sveden	Male	undergr	aduate	P011010	S	Sweden	19	1919	86	64	4				
26	DOE12 308	LZ Embarrass	Minneso	ita .	Male	Graduat	e	Econ	US	28	1434	96	71	4				
27	DOE13 JO	13 Intercourse	Pennsyl	vanta	Male	Undergr	agnate.	Math	US	20	2119	88	71	5				
28	DOE15 JA	ELS LOCO Oklah	689	Fenale	Undergr	aduate	ECON	US	20	2309	64	68	0	1000	1225	12		
29	DOE14 304	14 Buenos Aires	Argenti	na	Male	Graduat	9.	Politic	5	Argenti	na	30	2279	85	72	3		
30	DOE15 304	15 Aone Louis	1ana	Male	undergr	aduate	ECON	US	19	1907	79	74	3					

L.	10	Last Name	FIRST Name	CITY	STATE	Gender	Student Sta	atu Major	Country	AGE	SAT	Average score Height	(1n) New	spaper readership (times
5		100601	3ANE01	Los Argeles	California	Fenale	Graduate	Politics	US	30	226	67	61	5
		200602	JANE02	Sedona	Arizona	Female	Undergradua	ateMath	US	19	200	6 63	64	7
7		300601	30E01	Elmina	New York	Male	Graduate	Math	US	26	222	. 78	73	6
1		400602	30E02	Lackavana	New York	Male	Graduate	Econ	US	33	171	5 78	68	3
		500603	30E03	Defiance	Ohio	Male	Graduate	Econ	US	37	170	65	71	6
		600604	30E04	Tel Aviv	Israel	Male	Graduate	Econ	Israel	25	178	5 69	67	5
		700605	30E05	Cinax	North Caroli	rMale	Graduate	Politics	US	39	157	96	70	5
		800E03	JANE03	Liberal	Kansas	Female	Undergradu	atePolitics	US	21	184	87	62	5
		900E04	JANE04	Montreal	Canada	Female	Undergradua	ateMath	Canada	18	181	91	62	6
		1000605	DAME05	New York	New York	Female	Graduate	Math	US	33	204	71	66	5
		1100606	30E06	Hot Coffe	Mississippi	Male	Undergradu	ateEcon	US	18	178	82	67	3
		1200E06	JANE06	Java	Virginia	Fenale	Graduate	Math	US	38	151	79	59	5
		1300607	30E07	Varna	Bulgaria	Male	Graduate	Politics	Bulgaria	30	163	7 79	63	4
		1400608	J0E08	MOSCOW	Russia	Male	Graduate	Politics	Russia	30	151	70	75	6
		1500E07	JANE07	brunkand Cre	evex York	Fenale	Underbradus	ateMath	US	21	133	8 82	64	5
		1600E08	JANE08	Mexican Hat	Utah	Fenale	Undergradus	ateEcon	US	18	182	80	63	3
		1700609	JANE09	Ansterdan	Holland	Female	Undergradus	ateMath	Holland	19	149	75	60	3
		1800E10	JANE10	Mexico	Mexico	Fenale	Graduate	Politics	Mexico	31	224	95	59	4
		1900E11	JANE11	Caracas	Venezuela	Fenale	Undergradua	ateMath	Venezuela	18	225	92	68	5
		2000E09	30E09	San Juan	Puerto Rico	Male	Graduate	Politics	US	33	192	95	63	7
		2100E12	JANE12	Remote	Oregon	Fenale	Undergradua	ateEcon	US	19	172	67	62	7
		2200E10	30E10	New York	New York	Male	Undergradua	ateEcon	US	21	187	82	73	4
		2300E13	JANE13	The X	Massachusett	sFemale	Graduate	Politics	US	25	176	7 89	68	6
		2400E14	JANE14	Beijing	China	Female	Undergradua	ateMath	China	18	164	1 79	65	6
		2500E11	30E11	stockholm	Sveden	Male	Undergradua	atePolitics	Sweden	19	191	88	64	4
		2600E12	10E12	Enbannass	Minnesota	Male	Graduate	Econ	US	28	143	96	71	4
		2700E13	30E13	Intercourse	Pennsylvania	Male	Undergradus	ateMath	US	20	211	88	71	5
		2800E15	JANE15	LOCO	Ok lahona	Fenale	Undergradus	ateEcon	US	20	230	64	68	6
		2900E14	30E14	Buenos Afres	Argentina	Male	Graduate	Politics	Argentina	30	227	85	72	3
		3000E15	30E15	Acte	Louisiana	Male	Undergradus	ateEcon	US	19	190	7 79	74	3

Data format (record/fixed)...

Record form (fixed) ASCII (*.txt, *.dat). For this format you need a *codebook* to figure out the layout of the data (it indicates where a variable starts and where it ends). See next slide for an example. Notice that <u>fixed datasets do not have column headings</u>.

DOE01JANE01Los AngelesCaliforniaFemaleGraduatePoliticsUS302263676152DOE02JANE02SedonaArizonaFemaleUndergraduateMathUS192006636473 DOE01JOE01ElmiraNew YorkMaleGraduateMathUS262221787364DOE02JOE02LackawanaNew YorkMaleGraduateEconUS331716786835 DOE03JOE03DefianceOhioMaleGraduateEconUS371701657166DOE04JOE04Tel AvivIsraelMaleGraduateEconIsrael251786696757 DOE05JOE05CimaxNorth CarolinaMaleGraduatePoliticsUS391577967058 DOE03JANE03LiberalKansasFemaleUndergraduatePoliticsUS211842876259DOE04JANE04MontrealCanadaFemaleUndergraduateMathCanada1818139162 10 DOE05JANE05New YorkNew YorkFemaleGraduateMathUS3320417166511D0E06J0E06Hot CoffeMississippiMaleUndergraduateEconUS1817878267312 DOE06JANE06JavavirginiaFemaleGraduateMathUS3815137959513 DOE07JOE07VarnaBulgariaMaleGraduatePoliticsBulgaria3016377963414DOE08JOE08MoscowRussiaMaleGraduatePoliticsRussia3015127075615 DOE07JANE07Drunkard CreekNew YorkFemaleUndergraduateMathUS2113388264516DOE08JANE08Mexican HatUtahFemaleUndergraduateEconUS181821 8063317 DOE09JANE09AmsterdamHollandFemaleUndergraduateMathHolland1914947560318DOE10JANE10MexicoMexicoFemaleGraduatePoliticsMexico31224895 9419 DOE11JANE11CaracasVenezuelaFemaleUndergraduateMathVenezuela1822529268520 DOE09JOE09San JuanPuerto RicoMaleGraduatePoliticsUS3319239563721DOE12JANE12RemoteOregonFemaleUndergraduateEconUS1917276762722 DOE10JOE10New YorkNew YorkMaleUndergraduateEconUS2118728273423 DOE13JANE13The XMassachusetts FemaleGraduatePoliticsUS2517678968624DOE14JANE14BeijingChinaFemaleUndergraduateMathChina18164379656 DOE11JOE11StockholmSwedenMaleUndergraduatePoliticsSweden1919198864426DOE12JOE12EmbarrassMinnesotaMaleGraduateEconUS2814349671427 DOE13JOE13IntercoursePennsylvaniaMaleUndergraduateMathUS2021198871528DOE15JANE15LocoOklahomaFemaleUndergraduateEconUS20230964686 29DOE14JOE14Buenos AiresArgentinaMaleGraduatePoliticsArgentina3022798572330DOE15JOE15AcmeLouisianaMaleUndergraduateEconUS19190779 43

Codebook (ASCII to Stata using infix)

NOTE: The following is a small example of a codebook. Codebooks are like maps to help you figure out the structure of the data. Codebooks differ on how they present the layout of the data, in general, you need to look for: variable name, start column, end column or length, and format of the variable (whether is numeric and how many decimals (identified with letter 'F') or whether is a string variable marked with letter 'A')

Data Locations

Variable	Rec	Start	End	Format	In Stata you write the following to open the dataset. In the command window type:
var1 var2	1 1	1 24	7 25	F7.2 F2.0	 infix var1 1-7 var2 24-25 str2 var3 26-
var3	1	26	27	A2	2/ var4 32-33 str2 var5 44-45 using
var4	1	32	33	F2.0	mydata.dat
var5	1	44	45	A2	

Notice the 'str#' before var3 and var5, this is to indicate that these variables are string (text). The number in str refers to the length of the variable.

If you get an error like ... cannot be read as a number for ... click here

PU/DSS/OTR

From ASCII to Stata using a dictionary file/infile Using notepad or the do-file editor type:

diction	nary using <i>c</i>	:\data\mydata	.dat {	
	column(1)	varl	%7.2f	"Label for var1"
	_ column(24)	var2	%2f	"Label for var2"
	_ column(26)	str2 var3	%2s	"Label for var3"
	_ column(32)	var4	%2f	"Label for var4"
	_ _column(44)	str2 var5	°₀2s	"Label for var5"
}				
/*Do not	forget to close	the brackets and	press enter a	after the last bracket*/

Notice that the numbers in _column (#) refers to the position where the variable starts based on what the codebook shows. The option 'str#' indicates that the variable is a string (text or alphanumeric) with two characters, here you need to specify the length of the variable for Stata to read it correctly.

Save it as mydata.dct

To read data using the dictionary we need to import the data by using the command infile. If you want to use the menu go to File – Import - "ASCII data in fixed format with a data dictionary".

With infile we run the dictionary by typing:

```
infile using c:\data\mydata
```

NOTE: Stata commands sometimes do not work with copy-and-paste. If you get error try re-typing the commands *PU/DSS/OTR*If you get an error like ...cannot be read as a number for... <u>click here</u> From ASCII to Stata using a dictionary file/infile (data with more than one record) If your data is in more than one records using notepad or the do-file editor type:

```
dictionary using c:\data\mydata.dat {
      lines(2)
      line(1)
      column(1) var1 %7.2f
                                     "Label for var1"
      _column(24) var2 %2f
                                     "Label for var2"
     line(2)
      column(26) str2 var3 %2s
                                     "Label for var3"
                    var4 %2f
      _column(32)
                                     "Label for var4"
                                      "Label for var5"
     column(44) str2 var5
                             %2s
 }
/*Do not forget to close the brackets and press enter after the last bracket*/
```

Notice that the numbers in _column (#) refers to the position where the variable starts based on what the codebook shows.

Save it as mydata.dct

To read data using the dictionary we need to import the data by using the command infile. If you want to use the menu go to File – Import - "ASCII data in fixed format with a data dictionary".

With infile we run the dictionary by typing:

infile using c:\data\mydata

NOTE: Stata commands sometimes do not work with copy-and-paste. If you get error try re-typing the commands For more info on data with records see http://www.columbia.edu/cu/lweb/indiv/dssc/eds/stata_write.html

PU/DSS/OTR

From ASCII to Stata: error message

If running infix or infile you get errors like:

```
'1-1001-' cannot be read as a number for var1[14]
'de111' cannot be read as a number for var2[11]
'xvet-' cannot be read as a number for var3[15]
'0---0' cannot be read as a number for var4[16]
'A5' cannot be read as a number for var5[16]
```

Make sure you specified those variables to be read as strings (str) and set to the correct length (str#), see the codebook for these.

Double-check the data locations from the codebook. If the data file has more than one record make sure is indicated in the dictionary file.

If after checking for the codebook you find no error in the data locations or the data type, then depending of the type of variable, this may or may not be an error. Stata will still read the variables but those non-numeric observations will be set to missing.

From ASCII to SPSS

Using the syntax editor in SPSS and following the data layout described in the codebook, type:

```
FILE HANDLE FHAND /NAME='C:\data\mydata.dat' /LRECL=1003.
DATA LIST FILE=FHAND FIXED RECORDS = 1 TABLE /
   var1 1-7
   var2 24-25
   var3 26-27 (A)
   var4 32-33
   var5 44-45 (A).
EXECUTE.
```

You get /LRECL from the codebook.

Select the program and run it by clicking on the arrow

If you have more than one record type:

```
FILE HANDLE FHAND /NAME='C:\data\mydata.dat' /LRECL=1003.
DATA LIST FILE=FHAND FIXED RECORDS = 2 TABLE
/1
    var1 1-7
    var2 24-25
    var3 26-27 (A)
/2
    var4 32-33
    var5 44-45 (A).
EXECUTE.
    Notice the `(A)' after var3 and var5, this is to indicate that these variables are string (text).
```

From SPSS/SAS to Stata

If your data is already in SPSS format (*.sav) or SAS(*.sas7bcat).You can use the command usespss to read SPSS files in Stata or the command usesas to read SAS files.

If you have a file in SAS XPORT format you can use fduse (or go to file-import).

For SPSS and SAS, you may need to install it by typing

ssc install usespss ssc install usesas

Once installed just type

usespss using "c:\mydata.sav" usesas using "c:\mydata.sas7bcat"

Type help usespss or help usesas for more details.

Loading data in SPSS

Stata Version 8 SE (*.dta)

SPSS can read/save-as many proprietary data formats, go to file-open-data or file-save as

Open Data			? 🛛	Save Data As			1
Look in:	C SPSS	✓ G (ۇ ₪-	Save in:	C SPSS	S 🕫 🖻	•
My Recent Documents	inde inde inden indes inder in	ີ Scripts ີ Tutorial ີ sh_cn ີ sh_tw		My Recent Documents	i de en es fr fr Help	☐ Scripts ☐ Tutorial ☐ zh_cn ☐ zh_tw ☶ 1991 U.S. Genera	I Social Survey.sav
Desktop	it it ja JavaMail	III 1991 U.S. (III AML surviv. III anorectic.s III Anxiety 2.s	General Social Survey.sav al.sav av sav	Desktop	it ja JavaMail JRE	AML survival.sav anorectic.sav Anxiety 2.sav Anxiety.sav	vival cav
My Documents	DRE ko Looks MapData	Anxiety.sa Breast canc Carpet.sav	v cer survival.sav	My Documents	Looks MapData Maps	Carpet.sav Cars.sav Coffee.sav Coffee.sav	lata.sav
My Computer	i Maps i pl i ru	Employee c	, irtery data.sav lata.sav	My Computer		Keeping 43 of 43 variables.	Variable:
S	File name:		Open	My Network	File name: Save as type:	SPSS (*.sav)	Paste
My Network	riies of type:	SPSS (".sav) SPSS/PC+ (".sys) Systat (".syd) Systat (".syd) SPSS Portable (".por) Excel (".xls) Lotus (".w") SYLK (".slk) dBase (".dbf) SAS Long File Name (".sas7bdat) SAS Short File Name (".sas7bdat) SAS Short File Name (".sas7bdat) SAS v6 for Windows (".sd2) SAS v6 for Unix (".ssd01) SAS v6 for Unix (".ssd01) SAS v6 for Unix (".spt) Stata (".dta) Text (".txt) Data (".dat) All Files (".")	Cancel		v W □ Sa □ Sa	SPSS ["sav] SPSS 7.0 ("sav) SPSS 7.0 ("sav) SPSS /PC+ ("sys) Fixed 4SCII ("dat) Excel 37 and later ("sks) 1-2-3 Rel 3.0 ("wk3) 1-2-3 Rel 2.0 ("wk1) 1-2-3 Rel 2.0 ("wk1) 1-2-3 Rel 1.0 ("wks) SYLK ("skk) dBASE III ("dbf) dBASE III ("dbf) SAS v6 for Windows ("ssd2) SAS v6 for Vindows short extension("sd7) SAS v7+ Windows short extension("sd7) SAS v7+ Windows ong extension("sd7) SAS v7+ Windows ing extension("sd7) SAS v7+ for UNIX ("sav2bdat) SAS v7+ for UNIX ("sav2bdat) SAS v7+ windows ing extension("sd7) SAS v7+ w	Click he select th variables want

Loading data in R

1. tab-delimited (*.txt), type:

```
mydata <- read.table("mydata.txt")
mydata <- read.table("mydata.txt", header = TRUE, na.strings = "-9") #If
missing data is coded as "-9"</pre>
```

2. space-delimited (*.prn), type:

mydata <- read.table("mydata.prn")</pre>

3. comma-separated value (*.csv), type:

```
mydata <- read.csv("mydata.csv")
mydata <- read.csv("mydata.csv", header = TRUE) #With column headings</pre>
```

4. From SPSS/Stata to R use the foreign package, type:

library(foreign) # Load the foreign package.
stata.data <- read.dta("mydata.dta") # For Stata.
spss.data <- read.spss("mydata.sav", to.data.frame = TRUE) # For SPSS.</pre>

5. To load data in R format use

```
mydata <- load("mydata.RData")</pre>
```

Source: http://gking.harvard.edu/zelig/docs/static/syntax.pdf

Also check: <u>http://www.ats.ucla.edu/stat/R/modules/raw_data.htm</u>

PU/DSS/OTR

Other data formats...

Features	Stata	SPSS	SAS	R
Data extensions	*.dta	*.sav, *.por (portable file)	*.sas7bcat, *.sas#bcat, *.xpt (xport files)	*.Rdata
User interface	Programming/point-and-click	Mostly point-and-click	Programming	Programming
Data manipulation	Very strong	Moderate	Very strong	Very strong
Data analysis	Powerful	Powerful	Powerful/versatile	Powerful/versatile
Graphics	Very good	Very good	Good	Good
Cost	Affordable (perpetual licenses, renew only when upgrade)	Expensive (but not need to renew until upgrade, long term licenses)	Expensive (yearly renewal)	Open source
Program extensions	*.do (do-files)	*.sps (syntax files)	*.sas	*.txt (log files)
Output extension	*.log (text file, any word processor can read it), *.smcl (formated log, only Stata can read it).	*.spo (only SPSS can read it)	(various formats)	*.txt (log files, any word processor can read)

Compress data files (*.zip, *.gz)

If you have datafiles with extension *.zip, *.gz, *.rar you need file compression software to extract the datafiles. You can use Winzip, WinRAR or 7-zip among others.

7-zip (<u>http://7-zip.org/</u>) is freeware and deals with most compressed formats.

Stata allows you to unzip files from the command window.

```
unzipfile "c:\data\mydata.zip"
```

You can also zip file using *zipfile*

zipfile myzip.zip mydata.dta

Before you start

Once you have your data in the proper format, before you perform any analysis you need to explore and prepare it first:

- 1. Make sure variables are in columns and observations in rows.
- 2. Make sure you have all variables you need.
- 3. Make sure there is at least one id.

4. If times series make sure you have the years you want to include in your study.

- 5. Make sure missing data has either a blank space or a dot ('.')
- 6. Make sure to make a back-up copy of your original dataset.
- 7. Have the codebook handy.

Stata color-coded system

An important step is to make sure variables are in their expected format. Numeric should be numeric and text should be text.

Stata has a color-coded system for each type. Black is for numbers, red is for text or string and blue is for labeled variables.

Cleaning your variables

If you are using datasets with <u>categorical</u> variables you need to clean them by getting rid of the non-response categories like 'do not know', 'no answer', 'no applicable', 'not sure', 'refused', etc.

Usually non-response categories have higher values like 99, 999, 9999, etc (or in some cases negative values). Leaving these will bias, for example, the mean age or your regression results as outliers.

In the example below the non-response is coded as 999 and if we leave this the mean age would be 80 years, removing the 999 and setting it to missing, the average age goes down to 54 years.

This is a frequency of age, notice the 999 value for the no response.

88 90 92 93 95	2 3 4 1 1	0.15 0.22 0.29 0.07 0.07	96.58 96.80 97.09 97.16 97.23	
999	38	2.77	100.00	
Total	1,373	100.00		_

	tabstat	age	age_	_w999
--	---------	-----	------	-------

In Stata you can type replace age=. if age==999	stats	age	age_w999
or replace age=. if age>100	mean	54.58801	80.72615

Cleaning your variables

No response categories not only affect the statistics of the variable, it may also affect the interpretation and coefficients of the variable if we do not remove them.

In the example below responses go from 'very well' to 'refused', with codes 1 to 6. Leaving the variable 'as-is' in a regression model will misinterpret the variable as going from quite positive to ... refused? This does not make sense. You need to clean the variable by eliminating the no response so it goes from positive to negative. Even more, you may have to reverse the valence so the variable goes from negative to positive for a better/easier interpretation.

. tab var1				-	tab var1, no	label		
Status of Nat'l Eco	Freq.	Percent	Cum.		Status of Nat'l Eco	Freq.	Percent	Cum.
Very well Fairly well Fairly badly Very badly Not sure Refused	149 670 348 191 12 3	10.85 48.80 25.35 13.91 0.87 0.22	10.85 59.65 85.00 98.91 99.78 100.00	=	1 2 3 4 5 6	149 670 348 191 12 3	10.85 48.80 25.35 13.91 0.87 0.22	10.85 59.65 85.00 98.91 99.78 100.00
Total	1,373	100.00		_	Total	1,373	100.00	

Cleaning your variables (using recode in Stata)

First, never work with the original variable, always keep originals original.

The command recode in Stata lets you create a new variable without modifying the original.

```
recode var1 (1=4 "Very well") (2=3 "Fairly well") (3=2 "Fairly badly")
(4=1 "Very badly") (else=.), gen(var1_rec) label(var1_rec)
```

Get frequencies of both variables: var1 and var1_rec to verify:

tah var1				· · · · · · · · - <u>-</u> · · · ·			
Status of Nat'l Eco	Freq.	Percent	Cum.	RECODE of var1 (Status of Nat'1		D	6
Verv well	149 —	10.85	10.85	ECOJ	Freq.	Percent	Cum.
Fairly well Fairly badly Very badly Not sure Refused	670	48.80 25.35 13.91 0.87 0.22	59.65 <u>85.00</u> 98.91 99.78 100.00	Very badly Fairly badly Fairly well Very well	191 348 670 149	14.06 25.63 49.34 10.97	14.06 39.69 89.03 100.00
Total	1,373	100.00		Total	1,358	100.00	

. tab var1_rec

Now you can use <code>var1_rec</code> in a regression since it is an ordinal variable where higher values mean positive opinions. This process is useful when combining variables to create indexes.

For additional help on data management, analysis and presentation please check: <u>http://dss.princeton.edu/training/</u> http://dss.princeton.edu/

PU/DSS/OTR

Reshape wide to long (if original data in Excel)

The following dataset is not ready for analysis, years are in columns and cases and variables are in rows (<u>click here to get it</u>). The ideal is for years and countries to be in rows and variables (var1 and var2) in columns. We should have four columns: Country, Year, var1and var2

	Α	В	С	D	E	F	G	Н	- I	J	K	L	M
1	Country	Variable	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
2	Α	var1			8000.01	8212.90	7847.36	7702.89	7288.48	6430.98	6932.45	7486.24	8094.17
3	Α	var2			6.83	2.66	-4.45	-1.84	-5.38	-11.77	7.80	7.99	8.12
4	В	var1	18268.01	18738.99	19360.46	20151.42	20715.54	20866.90	21364.02	21801.41	22404.59	22676.26	23039.43
5	В	var2	2.87	2.58	3.32	4.09	2.80	0.73	2.38	2.05	2.77	1.21	1.60
6	С	var1	21088.14	21608.14	21988.64	22739.28	23436.61	24194.85	24300.57	24411.48	24650.02	25076.01	25346.01
7	С	var2	1.60	2.47	1.76	3.41	3.07	3.24	0.44	0.46	0.98	1.73	1.08
8	D	var1	313.74	321.36	331.76	342.12	351.70	365.33	377.15	386.26	398.86	415.96	432.63
9	D	var2	2.66	2.43	3.24	3.12	2.80	3.87	3.24	2.42	3.26	4.29	4.01
10	E	var1	21123.66	21659.55	22299.13	22972.31	23613.87	24150.86	24788.69	25368.87	25885.48	26582.19	26890.73
11	E	var2	2.69	2.54	2.95	3.02	2.79	2.27	2.64	2.34	2.04	2.69	1.16
12	F	var1	29941.64	30703.73	31716.04	32671.27	33748.21	34599.47	34483.98	34669.47	35312.75	36450.55	37267.33
13	F	var2	1.32	2.55	3.30	3.01	3.30	2.52	-0.33	0.54	1.86	3.22	2.24
14	G	var1	4891.60	5063.81	5328.88	5512.59	5647.06	5934.98	5864.12	5852.99	5872.29	6055.92	6162.84
15	G	var2	-7.86	3.52	5.23	3.45	2.44	5.10	-1.19	-0.19	0.33	3.13	1.77

We can prepare this dataset using Stata but we need to do some changes in Excel.

Reshape wide to long (if original data in Excel)

First, you need to add a character to the column headings so Stata can read them. Stata does not take numbers as variable names. In this case we add an "x" to the years. In excel you do this by using the 'replace' function. For the 1900s we replace "19" for "x19", same for the 2000s (make sure to select only the headings). See the following

Fin	l and Replace	? ×
	Find Replace	
F	ind what: 19	•
F	eplace with: x19	•
		Op <u>t</u> ions >>
F	Replace <u>All</u> <u>Replace</u> Find All <u>Find Next</u>	Close

Find and Replac	e	? ×
Fin <u>d</u> Reg	ace	
Find what:	20	•
Replace with:	×20	•
		Op <u>t</u> ions >>
Replace <u>All</u>	Replace Find All Eind Next	Close

Reshape wide to long (if original data in Excel)

		Α	В	С	D	E	F	G	Н		J	K	L	M
We have	1	Country	Variable	x1995	x1996	x1997	x1998	x1999	x2000	x2001	x2002	x2003	x2004	x2005
	2	Α	var1			8000.01	8212.90	7847.36	7702.89	7288.48	6430.98	6932.45	7486.24	8094.17
	3	Α	var2			6.83	2.66	-4.45	-1.84	-5.38	-11.77	7.80	7.99	8.12
	4	В	var1	18268.01	18738.99	19360.46	20151.42	20715.54	20866.90	21364.02	21801.41	22404.59	22676.26	23039.43
	5	В	var2	2.87	2.58	3.32	4.09	2.80	0.73	2.38	2.05	2.77	1.21	1.60
	6	С	var1	21088.14	21608.14	21988.64	22739.28	23436.61	24194.85	24300.57	24411.48	24650.02	25076.01	25346.01
	7	С	var2	1.60	2.47	1.76	3.41	3.07	3.24	0.44	0.46	0.98	1.73	1.08
	8	D	var1	313.74	321.36	331.76	342.12	351.70	365.33	377.15	386.26	398.86	415.96	432.63
	9	D	var2	2.66	2.43	3.24	3.12	2.80	3.87	3.24	2.42	3.26	4.29	4.01
	10	E	var1	21123.66	21659.55	22299.13	22972.31	23613.87	24150.86	24788.69	25368.87	25885.48	26582.19	26890.73
	11	Е	var2	2.69	2.54	2.95	3.02	2.79	2.27	2.64	2.34	2.04	2.69	1.16
	12	F	var1	29941.64	30703.73	31716.04	32671.27	33748.21	34599.47	34483.98	34669.47	35312.75	36450.55	37267.33
	13	F	var2	1.32	2.55	3.30	3.01	3.30	2.52	-0.33	0.54	1.86	3.22	2.24
	14	G	var1	4891.60	5063.81	5328.88	5512.59	5647.06	5934.98	5864.12	5852.99	5872.29	6055.92	6162.84
	15	G	var2	-7.86	3.52	5.23	3.45	2.44	5.10	-1.19	-0.19	0.33	3.13	1.77

Replace the dots ".." (or any string character) with a blank

Find and Replace
Find Replace
Find what:
Replace with:
Options >>
Replace All Replace Find All Find Next Close

Make sure the numbers are numbers. Select all and format cells as numbers.

Reshape wide to long (from Excel to Stata)

The table should look like.		Α	В	С	D	E	F	G	Н	1	J	K	L	М
	1	Country	Variable	x1995	x1996	x1997	x1998	x1999	x2000	x2001	x2002	x2003	x2004	x2005
	2	Α	var1			8000.01	8212.90	7847.36	7702.89	7288.48	6430.98	6932.45	7486.24	8094.17
	3	Α	var2			6.83	2.66	-4.45	-1.84	-5.38	-11.77	7.80	7.99	8.12
	4	В	var1	18268.01	18738.99	19360.46	20151.42	20715.54	20866.90	21364.02	21801.41	22404.59	22676.26	23039.43
	5	В	var2	2.87	2.58	3.32	4.09	2.80	0.73	2.38	2.05	2.77	1.21	1.60
	6	С	var1	21088.14	21608.14	21988.64	22739.28	23436.61	24194.85	24300.57	24411.48	24650.02	25076.01	25346.01
	7	С	var2	1.60	2.47	1.76	3.41	3.07	3.24	0.44	0.46	0.98	1.73	1.08
	8	D	var1	313.74	321.36	331.76	342.12	351.70	365.33	377.15	386.26	398.86	415.96	432.63
	9	D	var2	2.66	2.43	3.24	3.12	2.80	3.87	3.24	2.42	3.26	4.29	4.01
	10	E	var1	21123.66	21659.55	22299.13	22972.31	23613.87	24150.86	24788.69	25368.87	25885.48	26582.19	26890.73
	11	E	var2	2.69	2.54	2.95	3.02	2.79	2.27	2.64	2.34	2.04	2.69	1.16
	12	F	var1	29941.64	30703.73	31716.04	32671.27	33748.21	34599.47	34483.98	34669.47	35312.75	36450.55	37267.33
	13	F	var2	1.32	2.55	3.30	3.01	3.30	2.52	-0.33	0.54	1.86	3.22	2.24
	14	G	var1	4891.60	5063.81	5328.88	5512.59	5647.06	5934.98	5864.12	5852.99	5872.29	6055.92	6162.84
	15	G	var2	-7.86	3.52	5.23	3.45	2.44	5.10	-1.19	-0.19	0.33	3.13	1.77

Copy and paste the table from Excel to Stata. In Stata go to Data -> Data Editor

🔳 Data Ed	🖬 Data Editor												
Preserve	Preserve Restore Sort << >> Hide Delete												
	country[1] = 📓												
	country	variable	×1995	×1996	×1997	×1998	×1999	×2000	×2001	×2002	×2003	×2004	×2005
1	A	var1			8000.01	8212.9	7847.36	7702.89	7288.48	6430.98	6932.45	7486.24	8094.17
2	A	van2			6.83	2.66	-4.45	-1.84	-5.38	-11.77	7.8	7.99	8.12
3	В	var1	18268.01	18738.99	19360.46	20151.42	20715.54	20866.9	21364.02	21801.41	22404.59	22676.26	23039.43
4	В	van2	2.87	2.58	3.32	4.09	2.8	.73	2.38	2.05	2.77	1.21	1.6
5	C	var1	21088.14	21608.14	21988.64	22739.28	23436.61	24194.85	24300.57	24411.48	24650.02	25076.01	25346.01
6	C	van2	1.6	2.47	1.76	3.41	3.07	3.24	.44	.46	.98	1.73	1.08
7	D	var1	313.74	321.36	331.76	342.12	351.7	365.33	377.15	386.26	398.86	415.96	432.63
8	D	van2	2.66	2.43	3.24	3.12	2.8	3.87	3.24	2.42	3.26	4.29	4.01
9	E	var1	21123.66	21659.55	22299.13	22972.31	23613.87	24150.86	24788.69	25368.87	25885.48	26582.19	26890.73
10	E	van2	2.69	2.54	2.95	3.02	2.79	2.27	2.64	2.34	2.04	2.69	1.16
11	F	var1	29941.64	30703.73	31716.04	32671.27	33748.21	34599.47	34483.98	34669.47	35312.75	36450.55	37267.33
12	F	van2	1.32	2.55	3.3	3.01	3.3	2.52	33	.54	1.86	3.22	2.24
13	G	var1	4891.6	5063.81	5328.88	5512.59	5647.06	5934.98	5864.12	5852.99	5872.29	6055.92	6162.84
14	G	van2	-7.86	3.52	5.23	3.45	2.44	5.1	-1.19	19	.33	3.13	1.77

NOTE: You can save the excel file as *.csv and open it in Stata typing insheet using exceltable.csv

Reshape wide to long (summary)

id	x2001	x2002	x2003
1	2	7	1
2	3	5	9
3	1	1	8

x_var2 x var1 x var3 date

gen id = _n
order id
reshape long x , i(id) j(year)

id	year	х
1	1	2
1	2	7
1	3	1
2	1	3
2	2	5
2	3	9
3	1	1
3	2	1
3	3	8

reshape long x_var , i(date) j(id) str

date	id	x_var
1	1	2
1	2	7
1	3	1
2	1	3
2	2	5
2	3	9
3	1	1
3	2	1
3	3	8

Reshape (Stata, 1)

Deals to the events are to a unique id for each cheer whi		Variables	×	
Back to the example, create a unique to for each observation	on, type:	Name	Label	
gen id = _n order id	→	id country variable x1995 x1996 x1997 x1998 x1999		
To reshape from wide to long, type		×2000 ×2001 ×2002 ×2003 ×2004 ×2005		
reshape long x, i(id) j(year)				
. reshape long x, i(id) j(year) (note: j = 1995 1996 1997 1998 1999 2000 2001	2002 2003	3 2004 2	005)	
Data wide ->	long			
Number of obs.14->Number of variables14->j variable (11 values)->xii variables:->	154 5 year			
x1995 x1996 x2005 ->	X			

Where:

- **long –** Goes from wide to long format.
- x The variables with the prefix "x" (x1960, x1961, x1962, etc.) are to be converted from wide to long.
- i(id) A unique identifier for the wide format is in variable "id".

• j(year) – Indicates that the suffix of "x" (x1961, x1962, x1963, ...), the years, should be put in variable called "year".

NOTE: If you have more than one variable you can list them as follows: reshape long x y z, i(id) j(year)

resnape long x y z, l(ld)

Reshape wide to long (Stata, 2)

The data it should look like the picture below. Notice that var1 and var2 are together in one column as variable 'x' (the prefix we originally had for the years). If we had one variable we are done, in this example we have **two** and we need to separate them into two columns, var1 and var2. Basically we need to reshape again but this time from long to wide.

	id	year	country	variable	×
1	1	1995	A	var1	•
2	1	1996	A	var1	•
3	1	1997	A	var1	8000.01
4	1	1998	A	var1	8212.9
5	1	1999	A	var1	7847.36
6	1	2000	A	var1	7702.89
7	1	2001	A	var1	7288.48
8	1	2002	A	var1	6430.98
9	1	2003	A	var1	6932.45
10	1	2004	A	var1	7486.24
11	1	2005	A	var1	8094.17
12	2	1995	A	van2	•
13	2	1996	A	van2	•
14	2	1997	A	van2	6.83
15	2	1998	A	van2	2.66
16	2	1999	A	van2	-4.45
17	2	2000	A	van2	-1.84
18	2	2001	A	van2	-5.38
19	2	2002	A	van2	-11.77
20	2	2003	A	van2	7.8
21	2	2004	A	van2	7.99

Reshape (Stata, 3)

To concrete 1 and 0 we need to do a little bit of work	. encode vari	. encode variable, gen(varlabel)			
To separate variand variance we need to do a little bit of work.	.tab varlab	el			
	Variable	Freq.	Percent		
First we need to create a new variable with the labels of each	var1 var2	77 77	50.00 50.00		
valiable, type	Total	154	100.00		
	.tab varlab	el, nolabel			
encode variable, gen(varlabel)	Variable	Freq.	Percent		
	1	77 77	50.00 50.00		

Create a do-file with the labels for each variable. This comes in handy when dealing with lots of variables.

label save varlabel using varname, replace

label save varlabel using varname, replace You will notice that a file varname.do is created. file varname.do saved

Open the do-file with the do-file editor and do the following changes...

- Change "label define" to "label variable"
- Change "varlabel 1" to "x1" and
- "varlabel 2" to "x2"
- Delete ", modify
- Save the do-file

Î	S S	tata	Do-	File	Edit	or -	var	nam	e.do	5
-	File	Ē	dit	<u>S</u> ear	ch	<u>T</u> ool	s			
-		Ð		٢	A	X	þ	ß	r	ŝ
	1	Untitle	ed1.0	do (🗒 Vā	arna	me.d	lo		
Γ	lał	oel	va	ria	ble	x1	× 113	var	1"'	
	lab	bel	va	ria	ble	x2	1.64	vari	2"'	
Г	lal lal	bel bel	va: va:	ria ria	ble ble	x1 x2	• " ₁	var: var:	1"' 2"'	

Cum. 50.00 100.00

> Cum. 50.00

100.00

100.00

154

Total

Reshape (Stata, 4)

To separate var1 and var2 we need to reshape again, this time from long to wide. First we need to create another id to identify the groups (country and years), type

Reshape the data by typing

Where:

wide - Indicates long to wide format.

x – The variable of interest to go from long to wide is called "data".

i(id2) – A unique identifier for the wide format is in variable "id2". **j(varlabel)** – Indicates that the suffix of "data" has to be taken from ""varlabel" ("varlabel" has two categories: 1 –var1- and 2 – var2). **NOTE**: If "j" is not available in your dataset, you may be able to generate one using the following command:

bysort id: gen jvar= n

Then reshape

reshape wide data, i(id) j(jvar)

Reshape (Stata, 5)

Run the do-file <code>varname.do</code> by selecting all and clicking on the last icon, this will change the labels for x1 and x2

Variables		×
Name	Label	
id2 country year	group(country year) Country	
×1 ×2	var1 var2	

The final dataset will look like...

📕 Stata Do-File Editor - varname.do				
Eile Edit Search Tools				
- C 💀 📾 🖨 🖟 🚜 🗅 🛍 🖙 🐀 🗊 🗋				
🖺 Untitled1.do 📋 varname.do				
label variable x1 `"var1")				
label variable x2 `"var2"'				

	id2	country	year	×1	×2
1	1	A	1995	•	
2	2	A	1996		•
3	3	A	1997	8000.01	6.83
4	4	A	1998	8212.9	2.66
5	5	A	1999	7847.36	-4.45
6	6	A	2000	7702.89	-1.84
7	7	A	2001	7288.48	-5.38
8	8	A	2002	6430.98	-11.77
9	9	A	2003	6932.45	7.8
10	10	A	2004	7486.24	7.99
11	11	A	2005	8094.17	8.12
12	12	В	1995	18268.01	2.87
13	13	В	1996	18738.99	2.58
14	14	В	1997	19360.46	3.32
15	15	В	1998	20151.42	4.09
16	16	В	1999	20715.54	2.8
17	17	В	2000	20866.9	.73
18	18	В	2001	21364.02	2.38
19	19	В	2002	21801.41	2.05
20	20	В	2003	22404.59	2.77
21	21	В	2004	22676.26	1.21

Reshape long to wide (Stata, 1)

You want to go from...

id	time	r
1	1	2
1	2	7
1	3	1
2	1	3
2	2	5
2	3	9
3	1	1
3	2	1
3	3	8

reshape wide r, i(id) j(time)

to...

id	r.time1	r.time2	r.time3
1	2	7	1
2	3	5	9
3	1	1	8

EXAMPLE: If you have a dataset like this one (<u>click here</u> to get it), we need to change the date variable as follows:

```
tostring month year, replace
gen date=year+"_0"+month if length(month)==1
replace date=year+"_"+month if date==""
drop year month
order id date
Variables
X
Name Label
```

id date return interest

	id	year	month	return	interest
1	105.1	2002	11	1.307071	.87494
2	105.1	2002	12	1.403008	1.019082
3	105.1	2003	1	1.570926	1.152942
4	105.1	2003	2	1.894784	1.307366
5	105.1	2003	3	1.798847	1.235295
6	105.1	2003	4	1.7628	1.173506
7	105.1	2003	5	2.026655	1.297084
8	105.1	2003	6	2.302488	1.708849
9	105.1	2003	7	2.968058	1.749977
10	105.1	2003	8	3.027948	2.161742
11	105.1	2003	9	3.117896	2.238954
12	105.1	2003	10	5.036636	2.753636
13	105.1	2003	11	5.000024	3.542246
14	105.1	2003	12	7.469865	4.266157
15	105.1	2004	1	8.072268	5.145268
16	105.1	2004	2	7.95181	5.015967
17	105.1	2004	3	8.192726	5.843377
18	105.1	2004	4	8.493984	4.395458
19	105.1	2004	5	5.843343	3.542246
20	105.1	2004	6	5.458126	3.602774
21	105.1	2004	7	5.456205	3.911331

Reshape long to wide (Stata, 2)

The data will look like...

	id	id date		interest	
1	105.1	2002_11	1.307071	.87494	
2	105.1	2002_12	1.403008	1.019082	
3	105.1	2003_01	1.570926	1.152942	
4	105.1	2003_02	1.894784	1.307366	
5	105.1	2003_03	1.798847	1.235295	
6	105.1	2003_04	1.7628	1.173506	
7	105.1	2003_05	2.026655	1.297084	
8	105.1	2003_06	2.302488	1.708849	
9	105.1	2003_07	2.968058	1.749977	
10	105.1	2003_08	3.027948	2.161742	
11	105.1	2003_09	3.117896	2.238954	
12	105.1	2003_10	5.036636	2.753636	
13	105.1	2003_11	5.000024	3.542246	
14	105.1	2003_12	7.469865	4.266157	
15	105.1	2004_01	8.072268	5.145268	
16	105.1	2004_02	7.95181	5.015967	
17	105.1	2004_03	8.192726	5.843377	
18	105.1	2004_04	8.493984	4.395458	
19	105.1	2004_05	5.843343	3.542246	
20	105.1	2004_06	5.458126	3.602774	
21	105.1	2004_07	5.456205	3.911331	

To reshape type

reshape wide return interest, i(id) j(date) str

. reshape wide return interest, i(id) j(date) str

(note: j = 1998_11 1998_12 1999_01 1999_02 1999_03 1999_04 1999_05 1999_06 1999_07 1999_08 1999_09 1999_10 1999_11 > 1999_12 2000_01 2000_02 2000_03 2000_04 2000_05 2000_06 2000_07 2000_08 2000_09 2000_10 2000_11 2000_12 2001_01 2 > 001_02 2001_03 2001_04 2001_05 2001_06 2001_07 2001_08 2001_09 2001_10 2001_11 2001_12 2002_01 2002_02 2002_03 200 > 02_04 2002_05 2002_06 2002_07 2002_08 2002_09 2002_10 2002_11 2002_12 2003_01 2003_02 2003_03 2003_04 2003_05 200 > 3_06 2003_07 2003_08 2003_09 2003_10 2003_11 2003_12 2004_01 2004_02 2004_03 2004_04 2004_05 2004_06 2004_07 2004 > _08 2004_09 2004_10 2004_11 2004_12 2005_01 2005_02 2005_03 2005_04 2005_05 2005_06 2005_07 2005_08 2005_09 2005_ > 10 2005_11 2005_12 2007_01 2007_02 2007_03 2007_04 2007_05 2007_06 2007_07 2007_08 2007_09 2007_10 2007_11)

Data	long	->	wide
Number of obs.	802	->	25
Number of variables	4	->	195
j variable (97 values) xij variables:	date	->	(dropped)
5	return	->	return1998_11 return1998_12 return2007_11
	interest	->	interest1998_11 interest1998_12 interest2007_1

Where:

wide – Indicates the type of reshape, in this case from long to wide format.

return interest – The variables of interest from long to wide are "return" and "interest" (prefix for the new variables).

i(id) – A unique identifier for the wide format is in variable "id".

j(date) – Indicates the suffix of "return" and "interest" taken from "date" (notice "xij" variables:" above)

Reshape long to wide (Stata, 3)

The variable window and the data will look like

Variables	
Name	Label
id	
return1998_11	1998_11 return
interest1998_11	1998_11 interest
return1998_12	1998_12 return
interest1998_12	1998_12 interest
return1999_01	1999_01 return
interest1999_01	1999_01 interest
return1999_02	1999_02 return
interest1999_02	1999_02 interest
return1999_03	1999_03 return
interest1999_03	1999_03 interest
return1999_04	1999_04 return
interest1999_04	1999_04 interest
return1999_05	1999_05 return
interect1999_05	1999 05 interest

	id	return1998~1	interes~8_11	return1998~2	interes~8_12	return199~01
1	105.1			-		
2	121.1	3.4126	2.592616	3.108856	2.331589	3.139705
3	143.1	•	•	-	•	
4	161.2	•	•	•	•	
5	162.1	•	•	•	•	
6	162.2	•	•	•	•	
7	167.1	19.20548	15.14606	18.16995	13.73898	18.71529

If you want to sort all returns and interest together, run the following commands:

xpose, clear varname	Variables	
sort varname	Name	Label
	id	
xpose, clear	interest1998 11	
ordor id	interest1998 12	
	interest1999 01	
· · · · · · · · · · · · · · · · · · ·	interest1999 02	
	interest1999_03	
	interest1999_04	
	interest1999_05	
	interest1999_06	
	interest1999_07	
	interest1999_08	
	interest1999_09	
	interest1999_07	
	interest1000_11	
	interest1999_11	
RURACIOTR	Interest1999_12	

Renaming variables (using renvars)

You can use the command renvars to shorten the names of the variables...

```
renvars interest1998_11-interest2007_11, presub(interest i)
renvars return1998_11-return2007_11, presub(return r)
```

Before

After

ariables		Variables	
Name	Label	Name	Label
id		id	
interest1998 11		i1998_11	
interest1998_12		i1998_12	
interest1999_01		i1999_01	
interest1999_02		i1999_02	
interest1999_03		i1999_03	
interest1999_04		i1999_04	
interest1999_01		i1999_05	
interest1999_06		i1999_06	
interest1999_00		i1999_07	
interest1999_07		i1999_08	
interest1999_00		i1999_09	
interest1999_09		i1999_10	
interest1999_10		i1999_11	
Interest1999_11		i1999_12	
Interest1999-12			

NOTE: You may have to install renvars by typing:

```
ssc install renvars
```

Type help renvars for more info. Also help rename

Descriptive statistics (definitions)

Descriptive statistics are a collection of measurements of two things: *location* and *variability*.

Location tells you the central value of your variable (the mean is the most common measure).

Variability refers to the spread of the data from the center value (i.e. variance, standard deviation).

Statistics is basically the study of what causes variability in the data.

Location	Variability
Mean	Variance
Mode	Standard deviation
Median	Range

Descriptive statistics (location)...

Indicator	Definition	Formula	In Excel	In Stata	In R	
Location						
	The mean is the sum of the observations	$-\sum X_i$	=AVERAGE(range of cells)	-tabstat var1, s(mean)	summary(x)	
Mean	divided by the total number of observations. It is the most common	$X = \frac{2 - i}{n}$	For example:	or	mean(x) sapply(x, mean,	
	indicator of central tendency of a variable		=AVERAGE(J2:J31)	- sum var1	na.rm=T)	
Median	The median is another measure of central to To get the median you have to order the dat highest. The median is the number in the m If the number of cases is odd the median is for an even number of cases the median is two numbers in the middle. It is not affected known as the 50 th percentile. $2 6 \frac{7}{2} 8 9$ $2 6 \frac{78}{2} 9 10$	endency. a from lowest to iddle. the single value, the average of the by outliers. Also	=MEDIAN(range of cells)	- tabstat var1, s(median) or - sum var1, detail	summary(x) median(x) sapply(x, median, na.rm=T) #median	
Mode	The mode refers to the most frequent, repeanumber in the data	ated or common	=MODE(range of cells)	mmodes var1	table(x) (frequency table)	

NOTE: For mmodes you may have to install it by typing ssc install mmodes. You can estimate all statistics in Excell using "Descriptive Statistics" in "Analysis Toolpack". In Stata by typing all statistics in the parenthesis tabstat var1, s(mean median). In R see http://www.ats.ucla.edu/stat/r/faq/basic_desc.htm

Descriptive statistics (variability)...

Indicator	Definition	Formula	In Excel	In Stata	In R
Variability					
Variance	The variance measures the dispersion of the data from the mean. It is the simple mean of the squared distance from the mean.	$s^{2} = \frac{\sum (X_{i} - \overline{X})^{2}}{(n-1)}$	=VAR(range of cells)	- tabstat var1, s(variance) or - sum var1, detail	var(x) sapply(x, var, na.rm=T)
Standard deviation	 The standard deviation is the squared root of the variance. Indicates how close the data is to the mean. Assuming a normal distribution: 68% of the values are within 1 sd (.99) 95% within 2 sd (1.96) 99% within 3 sd (2.58). 	$s = \sqrt{\frac{\sum (X_i - \overline{X})^2}{(n-1)}}$	=STDEV(range of cells)	- tabstat var1, s(sd) or - sum var1, detail	sd(x) sapply(x, sd, na.rm=T)
Range	Range is a measure of dispersion. It i difference between the largest and sn "max" – "min".	s simple the nallest value,	=MAX(range of cells) - MIN(same range of cells)	tabstat var1, s(range)	range=(max(x)- min(x));range
	NOTE: You can estimate all s	statistics in Excell us	ing "Descriptive Statistic	s" in "Analysis Toolpack"	. In Stata by typing

all statistics in the parenthesis tabstat var1, s (mean median variance sd range). In R see

http://www.ats.ucla.edu/stat/r/faq/basic desc.htm

Descriptive statistics (standard deviation)

Source: Kachigan, Sam K., *Statistical Analysis. An Interdisciplinary Introduction to Univariate & Multivariate Methods*, 1986, p.61

Descriptive statistics (z-scores)...

z-scores show how many standard deviations a single value is from the mean. Having the mean is not enough.

 $z = \frac{x_i - \mu}{\sigma}$

Student	x i	Mean SAT score	sd	z-score	% (below)	%(above)	
А	1842	1849	275	-0.03	49.0%	51.0%	
В	1907	1849	275	0.21	58.4%	41.6%	
С	2279	1849	275 1.56		94.1%	5.9%	
Student	Xi	Mean SAT score	sd	z-score	% (below)	%(above)	
А	1842	1849	162	-0.04	48.3%	51.7%	
В	1907	1849	162	0.36	64.0%	36.0%	
С	2279	1849	162	2.65	99.6%	0.4%	

Student	Xi	Mean SAT score	sd	z-score	% (below)	%(above)
А	1855	1858	162	-0.02	49.3%	50.7%
В	1917	1858	162	0.36	64.2%	35.8%
С	2221	1858	162	2.24	98.7%	1.3%

NOTE: To get the %(below) you can use the tables at the end of any statistics book or in Excel use =normsdist(z-score). %(above) is just 1-% (below). In Stata type:

```
egen z_var1=std(var1)
gen below=normal(z_var1)
gen above=1-below
```

Descriptive statistics (distribution)...

Indicator	Definition	Formula	In Excel	In Stata	In R
Variability					
Standard error (deviation) of the mean	Indicates how close the sample mean is from the 'true' population mean. It increases as the variation increases and it decreases as the sample size goes up. It provides a measure of uncertainty.	$SE_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$	=(STDEV(range of cells))/(SQRT(COUNT(sam e range of cells))).	tabstat var1, s(semean)	sem=sd(x)/sqrt (length(x)); sem
Confidence intervals for the mean	The range where the 'true' value of the mean is likely to fall most of the time	$CI_{\overline{X}} = \overline{X} \pm SE_{\overline{X}} * Z$	Use "Descriptive Statistics" in the "Data Analysis" tab (1)	ci var1	Use package "pastecs"
Distribution					
Skewness	Measures the symmetry of the distribution (whether the mean is at the center of the distribution). The skewness value of a normal distribution is 0. A negative value indicates a skew to the left (left tail is longer that the right tail) and a positive values indicates a skew to the right (right tail is longer than the left one)	$Sk = \frac{\sum (X_i - \overline{X})^3}{(n-1)s^3}$	=SKEW(range of cells)	-tabstat var1, s(skew) - sum var1, detail	Custom estimation
Kurtosis	Measures the peakedness (or flatness) of a distribution. A normal distribution has a value of 3. A kurtosis >3 indicates a sharp peak with heavy tails closer to the mean (leptokurtic). A kurtosis < 3 indicates the opposite a flat top (platykurtic).	$K = \frac{\sum (X_i - \overline{X})^4}{(n-1)s^4}$	=KURT(range of cells)	-tabstat var1, s(k) - sum var1, detail	Custom estimation kurtosis(x)

Notation:

 X_i = individual value of X X(bar) = mean of X n = sample size s² = variance s = standard deviation SE_{X(bar)} = standard error of the mean Z = critical value (Z=1.96 give a 95% certainty)

For more info check the module "Descriptive Statistics with Excel/Stata" in <u>http://dss.princeton.edu/training/</u>

Confidence intervals...

Confidence intervals are ranges where the true mean is expected to lie.

Student	x i	Mean SAT score	sd	N	SE	Lower(95%)	Upper(95%)
А	1842	1849	275	30	50	1751	1947
В	1907	1849	275	30	50	1751	1947
С	2279	1849	275	30	50	1751	1947
					1		1
Student	Xi	Mean SAT score	sd	Ν	SE	Lower(95%)	Upper(95%)
А	1842	1849	162	30	30	1791	1907
В	1907	1849	162	30	30	1791	1907
С	2279	1849	162	30	30	1791	1907
Student	x i	Mean SAT score	sd	N	SE	Lower(95%)	Upper(95%)
А	1855	1858	162	30	30	1800	1916
В	1917	1858	162	30	30	1800	1916
С	2221	1858	162	30	30	1800	1916

lower(95%) = (Mean SAT score) – (SE*1.96) upper(95%) = (Mean SAT score) + (SE*1.96)

Coefficient of variation (CV)...

Measure of dispersion, helps compare variation across variables with different units. A variable with higher coefficient of variation is more dispersed than one with lower CV.

	Α	В	B/A
	Mean	Standard Deviation	Coefficient of variation
Age (years)	25	6.87	27%
SAT	1849	275.11	15%
Average score (grade)	80	10.11	13%
Height (in)	66	4.66	7%
Newspaper readership (times/wk)	5	1.28	26%

CV works only with variables with positive values.

Click here to get the table

Examples (Excel)

	A	В	С	D	E	F	G	Н	- I	J	K	L	Μ	N
1	ID	Last Name	First Name	City	State	Gender	Student Status	Major	Country	Age	SAT	Average score (grade)	Height (in)	Newspaper readership (times/wk)
2	1	DOE01	JANE01	Los Angeles	California	Female	Graduate	Politics	US	30	2263	67	61	5
3	2	DOE02	JANE02	Sedona	Arizona	Female	Undergraduate	Math	US	19	2006	63	64	7
4	3	DOE01	JOE01	Elmira	New York	Male	Graduate	Math	US	26	2221	78	73	6
5	4	DOE02	JOE02	Lackawana	New York	Male	Graduate	Econ	US	33	1716	78	68	3
6	5	DOE03	JOE03	Defiance	Ohio	Male	Graduate	Econ	US	37	1701	65	71	6
7	6	DOE04	JOE04	Tel Aviv	Israel	Male	Graduate	Econ	Israel	25	1786	69	67	5
8	7	DOE05	JOE05	Cimax	North Carolina	Male	Graduate	Politics	US	39	1577	96	70	5
9	8	DOE03	JANE03	Liberal	Kansas	Female	Undergraduate	Politics	US	21	1842	87	62	5
10	9	DOE04	JANE04	Montreal	Canada	Female	Undergraduate	Math	Canada	18	1813	91	62	6
11	10	DOE05	JANE05	New York	New York	Female	Graduate	Math	US	33	2041	71	66	5
12	11	DOE06	JOE06	Hot Coffe	Mississippi	Male	Undergraduate	Econ	US	18	1787	82	67	3
13	12	DOE06	JANE06	Java	Virginia	Female	Graduate	Math	US	38	1513	79	59	5
14	13	DOE07	JOE07	Varna	Bulgaria	Male	Graduate	Politics	Bulgaria	30	1637	79	63	4
15	14	DOE08	JOE08	Moscow	Russia	Male	Graduate	Politics	Russia	30	1512	70	75	6
16	15	DOE07	JANE07	Drunkard Creek	New York	Female	Undergraduate	Math	US	21	1338	82	64	5
17	16	DOE08	JANE08	Mexican Hat	Utah	Female	Undergraduate	Econ	US	18	1821	80	63	3
18	17	DOE09	JANE09	Amsterdam	Holland	Female	Undergraduate	Math	Holland	19	1494	75	60	3
19	18	DOE10	JANE10	Mexico	Mexico	Female	Graduate	Politics	Mexico	31	2248	95	59	4
20	19	DOE11	JANE11	Caracas	Venezuela	Female	Undergraduate	Math	Venezuela	18	2252	92	68	5
21	20	DOE09	JOE09	San Juan	Puerto Rico	Male	Graduate	Politics	US	33	1923	95	63	7
22	21	DOE12	JANE12	Remote	Oregon	Female	Undergraduate	Econ	US	19	1727	67	62	7
23	22	DOE10	JOE10	New York	New York	Male	Undergraduate	Econ	US	21	1872	82	73	4
24	23	DOE13	JANE13	The X	Massachusetts	Female	Graduate	Politics	US	25	1767	89	68	6
25	24	DOE14	JANE14	Beijing	China	Female	Undergraduate	Math	China	18	1643	79	65	6
26	25	DOE11	JOE11	Stockholm	Sweden	Male	Undergraduate	Politics	Sweden	19	1919	88	64	4
27	26	DOE12	JOE12	Embarrass	Minnesota	Male	Graduate	Econ	US	28	1434	96	71	4
28	27	DOE13	JOE13	Intercourse	Pennsylvania	Male	Undergraduate	Math	US	20	2119	88	71	5
29	28	DOE15	JANE15	Loco	Oklahoma	Female	Undergraduate	Econ	US	20	2309	64	68	6
30	29	DOE14	JOE14	Buenos Aires	Argentina	Male	Graduate	Politics	Argentina	30	2279	85	72	3
31	30	DOE15	JOE15	Acme	Louisiana	Male	Undergraduate	Econ	US	19	1907	79	74	3

Age	SAT	Average score (grade)	Height (in)	Newspaper readership (times/wk)				
Mean	25.2Mean	1848.9Mean	80.40091482Mean	66.43333333Mean	4.866666667			
Standard Error	1.254325848Standard Error	50.22838301Standard Error	1.845084499Standard Error	0.850535103Standard Error	0.233579509			
Median	23Median	1817Median	79.74967997Median	66.5Median	5			
Mode	19Mode	#N/A Mode	67Mode	68Mode	5			
Standard Deviation	Standard 6.870225615Deviation	Standard 275.112184Deviation	Standard 10.10594401Deviation	Standard 4.658572619Deviation	1.27936766			
Sample Variance	Sample 47.2Variance	Sample 75686.71379Variance	Sample 102.1301043Variance	Sample 21.70229885Variance	1.636781609			
Kurtosis	-1.049751548Kurtosis	-0.846633469Kurtosis	-0.991907645Kurtosis	-1.066828463Kurtosis	-0.972412281			
Skewness	0.557190515Skewness	0.155667999Skewness	-0.112360607Skewness	0.171892733Skewness	-0.051910426			
Range	21Range	971Range	32.88251459Range	16Range	4			
Minimum	18Minimum	1338Minimum	63Minimum	59Minimum	3			
Maximum	39Maximum	2309Maximum	95.88251459Maximum	75Maximum	7			
Sum	756Sum	55467Sum	2412.027445Sum	1993Sum	146			
Count	30Count	30Count	30Count	30Count	30			

Use "Descriptive Statistics" in the "Data Analysis" tab.

PU/DSS/OTR For Excel 2007 http://office.microsoft.com/en-us/excel/HP100215691033.aspx For Excel 2003 http://office.microsoft.com/en-us/excel/HP011277241033.aspx

Examples (Stata)

Click here to get the table

	id	lastname	firstname	city	state	gender	studentstatus	major	country	age	sat	averagesco~e	heightin	newspaperr~k		
1	1	D0E01	JANE01	Los Angeles	California	Female	Graduate	Politics	US	30 2263		67 6		5		
2	2	D0E02	JANE02	Sedona	Arizona	Female	Undergraduate	Math	US	19	2006	63	64	7		
3	3	D0E01	J0E01	Elmina	New York	Male	Graduate	Math	US	26	2221	78	73	6		
4	4	D0E02	J0E02	Lackawana	New York	Male	Graduate	Econ	US	33	1716	78	68	3		
5	5	DOE03	JOE03	Defiance	Ohio	Male	Graduate	Econ	US	37	1701	65	71	6		
6	6	D0E04	J0E04	Tel Aviv	Israel	Male	Graduate	Econ	Israel	25	1786	69	67	5		
7	7	DOE05	JOE05	Cimax	North Carolina	Male	Graduate	Politics	US	39	39 1577		70	5		
8	8	DOE03	JANE03	Liberal	Kansas	Female	Undergraduate	Politics	US	21	1842	87	62	5		
9	9	D0E04	JANE04	Montreal	Canada	Female	Undergraduate	Math	Canada	18	1813	91	62	6		
10	10	DOE05	JANE05	New York	New York	Female	Graduate	Math	US	33	2041	71	66	5		
11	11	DOE06	JOE06	Hot Coffe	Mississippi	Male	Undergraduate	Econ	US	18	1787	82	67			
12	12	DOE06	JANE06	Java	Virginia	Female	Graduate	Math	US	38	38 1513		59	5		
13	13	DOE07	JOE0/	Varna	Bulgaria	Male	Graduate	Politics Bulgari		30	1637	79	63	4		
14	14	DOE08	JOE08	Moscow David Carely	Kussia Neve Merch	Male	Graduate	POINTICS	KUSSIA	30 1512		70	75	ь -		
15	15	DOE07	JANE07	Drunkard Creek	New York	Female	Undergraduate	Math	US	21	1338	82	64	5		
10	16	DOE08	JANE08	Mexican Hat	Utan	Female	Undergraduate	Econ	US	18	18 1821		63	2		
1/	1/	DOEU9	JANE09	Amsterdam	Horrand	Female	Undergraduate	Math	Holland	19	19 1494		60	3		
10	18	DOELO	JANEIO	Generatio	Veneruela	Female	Undergraduate	Math	Mexico	10	2248	95	39	4 F		
19	19	DOETT	JOEOO	Caracas San Juan	Puerto Rico	Male	Graduate	Politics	venezuera	22	- 10 2252		67	7		
20	20	D0E03	JANE12	Pemote	Oregon	Eemale	Undergraduate	Econ				67	67	7		
22	22	DOE10	10E10	New York	New York	Male	Undergraduate	Econ	115	21	1872	82	73	· · · · · · · · · · · · · · · · · · ·		
23	23	DOE13	JANE13	The X	Massachusetts	Female	Graduate	Politics	us	25	1767	89	68	6		
24	24	DOE14	JANE14	Beijing	China	Female	Undergraduate	Math	China	18	1643	79	65	6		
25	25	D0E11	JOE11	Stockholm	Sweden	Male	Undergraduate	Politics	Sweden	19	1919	88	64	4		
26	26	D0E12	J0E12	Embarrass	Minnesota	Male	Graduate	Econ	US	28	1434	96	71	4		
27	27	DOE13	JOE13	Intercourse	Pennsylvania	Male	Undergraduate	Math	US	20	2119	88 71		5		
28	28	DOE15	JANE15	Loco	0k1ahoma	Female	Undergraduate	Econ	US	20	2309	64	68	6		
29	29	D0E14	J0E14	Buenos Aires	Argentina	Male	Graduate	Politics	Argentina	30	2279	85	72	3		
30	30	DOE15	JOE15	Acme	Louisiana	Male	Undergraduate	Econ	US	19	1907	79	74	3		
rename averagescoregrade score					sta	ats	age 25.2		sa	t	score		htin	read 4.866667		
					<u> </u>											
					me	ean			1848.	980			3333			
ronam		Janorroa	dorshinti	meswk read	so (mos	n)	1 25/3	26 50	2283	Q 1	1 846070		5251	2225705		
Tename newspapereadershiptimeswk read					26(1160		T.2343		1.22030	<u>с</u> т.	1.0400/9		11111	.2333/33		
					۲ ډ	50		23	181	/	79.	5	66.5	5		
						h h	6 8702	26 27	75 112	2 10	1113	9 4 65	8573	1 279368		
tabstat age sat score heightin read, variance s(mean semean median sd var skew k skewness						54	0.0702			1 10	102.2402		7022	1 626702		
					variar	ice	47	. 2 / 3	0000./.	т то			7023	1.030/02		
					255	. 52893	48 .1	1477739		- 1017756		1759	049278			
							1 0226	70 2	00440	0 1	06622	E 1 00	0210	1 000717		
count sum range min max)					KULLOS		1.923679 2 30 756		.09440	о т.	1.900325		6TCC	T.200/T/		
						N			30 55467		30 2411		30	30		
					c								1002	1/6		
				2		1	50	1 971		$L \qquad 33$		1327	T40			
				rar	ige		21					10	4			
					n	nin I	18		8 1338		63		59	3		
								20					75	5 7		
	PU/DSS	S/OTR			n	iidx		צכ	230	7	9	σ	70	/		

Examples (R)

1.8460790 8.505351e-01

3.7756555 1.739540e+00

10.1113911 4.658573e+00

0.1258157 7.012402e-02

0.2335795

0.4777237

1.6367816

1.2793677

0.2628838

>	st	ud	lents													
	1	D	last	first	City	State	Gender	status	Major	Country	Age	SAT	score	height	read	
1		1	DOE01	JANE01	Los Angeles	California	Female	Graduate	Politics	US	30	22.63	67	61	5	
2		2	DOE02	JANE02	Sedona	Arizona	Female	Undergraduate	Math	US	19	2006	63	64	7	
3		3	DOE01	JOE01	Elmira	New York	Male	Graduate	Math	US	2.6	2221	78	73	6	
4		4	DOE02	JOE02	Lackawana	New York	Male	Graduate	Econ	US	33	1716	78	68	3	
5		5	DOE03	JOE03	Defiance	Ohio	Male	Graduate	Econ	US	37	1701	65	71	6	
6		6	DOE04	JOE04	Tel Aviv	Israel	Male	Graduate	Econ	Israel	25	1786	69	67	5	
7		7	DOE05	JOE05	Cimax	North Carolina	Male	Graduate	Politics	US	39	1577	96	70	5	
8		8	DOEO3	JANE03	Liberal	Kansas	Female	Undergraduate	Politics	US	21	1842	87	62	5	
9		9	DOE04	JANE04	Montreal	Canada	Female	Undergraduate	Math	Canada	18	1813	91	62	6	
10) 1	ιo	DOE05	JANEO5	New York	New York	Female	Graduate	Math	US	33	2041	71	66	5	
11	L 1	11	DOE06	JOE06	Hot Coffe	Mississippi	Male	Undergraduate	Econ	US	18	1787	82	67	3	
12	2 1	12	DOE06	JANE06	Java	Virginia	Female	Graduate	Math	US	38	1513	79	59	5	
13	3 1	13	DOE07	JOE07	Varna	Bulgaria	Male	Graduate	Politics	Bulgaria	30	1637	79	63	4	
14	ł 1	14	DOEOS	JOE08	Moscow	Russia	Male	Graduate	Politics	Russia	30	1512	70	75	6	
13	5 1	15	DOE07	JANE07	Drunkard Creek	New York	Female	Undergraduate	Math	US	21	1338	82	64	5	
16	5 1	16	DOEOS	JANE08	Mexican Hat	Utah	Female	Undergraduate	Econ	US	18	1821	80	63	3	
11	7 1	17	DOE09	JANE09	Amsterdam	Holland	Female	Undergraduate	Math	Holland	19	1494	75	60	3	
18	3 1	18	DOE10	JANE10	Mexico	Mexico	Female	Graduate	Politics	Mexico	31	2248	95	59	4	
19	9 1	19	DOE11	JANE11	Caracas	Venezuela	Female	Undergraduate	Math	Venezuela	18	2252	92	68	5	
20) 2	20	DOE09	JOE09	San Juan	Puerto Rico	Male	Graduate	Politics	US	33	1923	95	63	7	
2:	L 2	1	DOE12	JANE12	Remote	Oregon	Female	Undergraduate	Econ	US	19	1727	67	62	7	
22	2	2	DOE10	JOE10	New York	New York	Male	Undergraduate	Econ	US	21	1872	82	73	4	
23	3 2	3	DOE13	JANE13	The X	Massachusetts	Female	Graduate	Politics	US	25	1767	89	68	6	
24	£ 2	4	DOE14	JANE14	Beijing	China	Female	Undergraduate	Math	China	18	1643	79	65	6	
23	5 2	:5	DOE11	JOE11	Stockholm	Sweden	Male	Undergraduate	Politics	Sweden	19	1919	88	64	4	
2.6	5 2	6	DOE12	JOE12	Embarrass	Minnesota	Male	Graduate	Econ	US	28	1434	96	71	4	
21	7 2	27	DOE13	JOE13	Intercourse	Pennsylvania	Male	Undergraduate	Math	US	20	2119	88	71	5	
- 28	3 2	8	DOE15	JANE15	Loco	Oklahoma	Female	Undergraduate	Econ	US	20	2309	64	68	6	
29	9 2	9	DOE14	JOE14	Buenos Aires	Argentina	Male	Graduate	Politics	Argentina	30	2279	85	72	3	
30) з	0	DOE15	JOE15	Acme	Louisiana	Male	Undergraduate	Econ	US	19	1907	79	74	3	
>	L							> librory(no	atoral							
								Loading requ	uired nackad	re: boot						
								> stat.desc(students[10	D:14])						
									Âge	e : :	SAT		score	hed	ight	read
								nbr.val	30.00000	3.000000e	+01	30.0	000000	3.0000006	2+01	30.000000
								nbr.null	0.00000	0.000000e	+00	0.0	000000	0.0000006	≥+00	0.000000
ins	+ :	a 1	1 na	ickade	es ("nasters	")		nbr.na	0.00000	0.000000e	+00	0.0	000000	0.00000e	≥+00	0.000000
±110		~	- · PC	ichage	b (publiceb	/		min	18.00000	D 1.338000e∙	+03	63.0	000000	5.900000e	2+01	3.0000000
								max	39.000000	J 2.309000e	+03	96.0	0000000	7.500000e	2+01	7.0000000
								range	21.000000	5 9.710000e	+02	33.0		1.6000006	2+01	4.0000000
								sum	23 000000	J 3.346700e-	+04 2	20.5	000000	1.9930006	2+U3 :	E 0000000
								meuran	25.000000	- 1.01/UUUE	+03 +02	19.5	666667	6 642222	=+01 =+01	A 9666667
								ilican	UUUUU	- T.OZO2006.	TUJ	00.3	000007	0.0700000	ETUT -	

var std.dev

SE.mean CI.mean.0.95 1.254326 5.022838e+01

2.565384 1.027286e+02

6.870226 2.751122e+02

0.272628 1.487978e-01

47.200000 7.568671e+04 102.2402299 2.170230e+01

Useful links / Recommended books/References

- DSS Online Training Section http://dss.princeton.edu/training/
- UCLA Resources http://www.ats.ucla.edu/stat/
- DSS help-sheets for STATA http://dss/online_help/stats_packages/stata/stata.htm
- Introduction to Stata (PDF), Christopher F. Baum, Boston College, USA. "A 67-page description of Stata, its key features and benefits, and other useful information." <u>http://fmwww.bc.edu/GStat/docs/StataIntro.pdf</u>
- STATA FAQ website http://stata.com/support/faqs/
- Princeton DSS Libguides http://libguides.princeton.edu/dss

Books

- Introduction to econometrics / James H. Stock, Mark W. Watson. 2nd ed., Boston: Pearson Addison Wesley, 2007.
- Data analysis using regression and multilevel/hierarchical models / Andrew Gelman, Jennifer Hill. Cambridge ; New York : Cambridge University Press, 2007.
- Econometric analysis / William H. Greene. 6th ed., Upper Saddle River, N.J. : Prentice Hall, 2008.
- Designing Social Inquiry: Scientific Inference in Qualitative Research / Gary King, Robert O. Keohane, Sidney Verba, Princeton University Press, 1994.
- Unifying Political Methodology: The Likelihood Theory of Statistical Inference / Gary King, Cambridge University Press, 1989
- Statistical Analysis: an interdisciplinary introduction to univariate & multivariate methods / Sam Kachigan, New York : Radius Press, c1986
- Statistics with Stata (updated for version 9) / Lawrence Hamilton, Thomson Books/Cole, 2006