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The Story behind the Succinctly Series 
of Books 

Daniel Jebaraj, Vice President  
Syncfusion, Inc.  

taying on the cutting edge 

As many of you may know, Syncfusion is a provider of software components for the 
Microsoft platform. This puts us in the exciting but challenging position of always 
being on the cutting edge. 

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other 
week these days, we have to educate ourselves, quickly. 

Information is plentiful but harder to digest 

In reality, this translates into a lot of book orders, blog searches, and Twitter scans. 

While more information is becoming available on the Internet and more and more books are 
being published, even on topics that are relatively new, one aspect that continues to inhibit us is 
the inability to find concise technology overview books.  

We are usually faced with two options: read several 500+ page books or scour the web for 
relevant blog posts and other articles. Just as everyone else who has a job to do and customers 
to serve, we find this quite frustrating. 

The Succinctly series 

This frustration translated into a deep desire to produce a series of concise technical books that 
would be targeted at developers working on the Microsoft platform.  

We firmly believe, given the background knowledge such developers have, that most topics can 
be translated into books that are between 50 and 100 pages.  

This is exactly what we resolved to accomplish with the Succinctly series. Isnôt everything 
wonderful born out of a deep desire to change things for the better? 

The best authors, the best content 

Each author was carefully chosen from a pool of talented experts who shared our vision. The 
book you now hold in your hands, and the others available in this series, are a result of the 
authorsô tireless work. You will find original content that is guaranteed to get you up and running 
in about the time it takes to drink a few cups of coffee.  

S 
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Free forever  

Syncfusion will be working to produce books on several topics. The books will always be free. 
Any updates we publish will also be free.  

Free? What is the catch? 

There is no catch here. Syncfusion has a vested interest in this effort.  

As a component vendor, our unique claim has always been that we offer deeper and broader 
frameworks than anyone else on the market. Developer education greatly helps us market and 
sell against competing vendors who promise to ñenable AJAX support with one click,ò or ñturn 
the moon to cheese!ò 

Let us know what you think 

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at 
succinctly-series@syncfusion.com.  

We sincerely hope you enjoy reading this book and that it helps you better understand the topic 
of study. Thank you for reading. 

 

 

 

 

 

 

 

 

 

 

 

Please follow us on Twitter and ñLikeò us on Facebook to help us spread the  
word about the Succinctly series! 

                      

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion
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Preface 

Who is this book for? 

This bookôs aim is to provide a general overview of Support Vector Machines (SVMs). You will 
learn what they are, which kinds of problems they can solve, and how to use them. I tried to 
make this book useful for many categories of readers. Software engineers will find a lot of code 
examples alongside simple explanations of the algorithms. A deeper understanding of how 
SVMs work internally will enable you to make better use of the available implementations.  

Students looking to take a first look at SVMs will find a large enough coverage of the subject to 
spike their curiosity. I also tried to include as many references as I could so that the interested 
reader can dive deeper.  

How should you read this book? 

Because each chapter is built on the previous one, reading this book sequentially is the 
preferred method. 

References 

You will find a bibliography at the end of the book. A reference to a paper or book is made with 
the name of the author followed by the publication date. For instance, (Bishop, 2006) refers to 
the following line in the bibliography:  

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. 

Code listings 

The code listings in this book have been created using the Pycharm IDE, Community Edition 
2016.2.3, and executed with WinPython 64-bit 3.5.1.2 version of Python and NumPy. 
You can find the code source associated with this book in this Bitbucket. 

https://bitbucket.org/syncfusiontech/svm-succinctly
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Introduction 

Support Vector Machine is one of the most performant off-the-shelf supervised machine 
learning algorithms. This means that when you have a problem and you try to run a SVM on it, 
you will often get pretty good results without many tweaks. Despite this, because it is based on 
a strong mathematical background, it is often seen as a black box. In this book, we will go under 
the hood and look at the main ideas behind SVM. There are several Support Vector Machines, 
which is why I will often refer to SVMs. The goal of this book is to understand how they work.  
 
SVMs are the result of the work of several people over many years. The first SVM algorithm is 
attributed to Vladimir Vapnik in 1963. He later worked closely with Alexey Chervonenkis on what 
is known as the VC theory, which attempts to explain the learning process from a statistical 
point of view, and they both contributed greatly to the SVM. You can find a very detailed history 
of SVMs here. 

In real life, SVMs have been successfully used in three main areas: text categorization, image 
recognition, and bioinformatics (Cristianini & Shawe-Taylor, 2000). Specific examples include 
classifying news stories, handwritten digit recognition, and cancer tissue samples.  

In the first chapter, we will consider important concepts: vectors, linear separability, and 
hyperplanes. They are the building blocks that will allow you to understand SVMs. In Chapter 2, 
instead of jumping right into the subject, we will study a simple algorithm known as the 
Perceptron. Do not skip itðeven though it does not discuss SVMs, this chapter will give you 
precious insight into why SVMs are better at classifying data.  

Chapter 3 will be used to step-by-step construct what is known as the SVM optimization 
problem. Chapter 4, which is probably the hardest, will show you how to solve this problemð
first mathematically, then programmatically. In Chapter 5, we will discover a new support vector 
machine known as the Soft-margin SVM. We will see how it is a crucial improvement to the 
original problem.  

Chapter 6 will introduce kernels and will explain the so called ñkernel trick.ò With this trick, we 
will get the kernelized SVM, which is the most-used nowadays. In Chapter 7, we will learn about 
SMO, an algorithm specifically created to quickly solve the SVM optimization problem. In 
Chapter 8, we will see that SVMs can be used to classify more than one class.  

Every chapter contains code samples and figures so that you can understand the concepts 
more easily. Of course, this book cannot cover every subject, and some of them will not be 
presented. In the conclusion, you will find pointers toward what you can learn next about SVMs.  

Let us now begin our journey. 

 

https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_theory
http://www.svms.org/history.html
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Chapter 1  Prerequisites 

This chapter introduces some basics you need to know in order to understand SVMs better. We 
will first see what vectors are and look at some of their key properties. Then we will learn what it 
means for data to be linearly separable before introducing a key component: the hyperplane.  

Vectors 

In Support Vector Machine, there is the word vector. It is important to know some basics about 
vectors in order to understand SVMs and how to use them. 

What is a vector? 

A vector is a mathematical object that can be represented by an arrow (Figure 1).  

 

Figure 1: Representation of a vector 

When we do calculations, we denote a vector with the coordinates of its endpoint (the point 
where the tip of the arrow is). In Figure 1, the point A has the coordinates (4,3). We can write: 

 

If we want to, we can give another name to the vector, for instance, .  

 

From this point, one might be tempted to think that a vector is defined by its coordinates. 
However, if I give you a sheet of paper with only a horizontal line and ask you to trace the same 
vector as the one in Figure 1, you can still do it. 
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You need only two pieces of information: 

¶ What is the length of the vector? 
¶ What is the angle between the vector and the horizontal line? 

This leads us to the following definition of a vector:  

A vector is an object that has both a magnitude and a direction. 

Let us take a closer look at each of these components. 

The magnitude of a vector 

The magnitude, or length, of a vector  is written , and is called its norm. 

 

Figure 2: The magnitude of this vector is the length of the segment OA 

In Figure 2, we can calculate the norm  of vector  by using the Pythagorean theorem: 

 

 

 

 

 

In general, we compute the norm of a vector   by using the Euclidean norm 
formula:   
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In Python, computing the norm can easily be done by calling the norm function provided by the 

numpy module, as shown in Code Listing 1. 

Code Listing 1 

import numpy as np 
 
x = [ 3, 4]  
np.linalg.norm(x) # 5 .0  

The direction of a vector 

The direction is the second component of a vector. By definition, it is a new vector for which the 
coordinates are the initial coordinates of our vector divided by its norm.  

The direction of a vector  is the vector: 

 
 

It can be computed in Python using the code in Code Listing 2. 

Code Listing 2 

import numpy as np 
 
# Compute the direction of a vector x .  
def direction(x):  
    return x/np.linalg.norm(x)  

Where does it come from? Geometry. Figure 3 shows us a vector  and its angles with respect 
to the horizontal and vertical axis. There is an angle  (theta) between  and the horizontal axis, 
and there is an angle  (alpha) between  and the vertical axis. 
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Figure 3: A vector u and its angles with respect to the axis 

Using elementary geometry, we see that  and   , which means that  can 

also be defined by:   

 

The coordinates of  are defined by cosines. As a result, if the angle between  and an axis 
changes, which means the direction of  changes,  will also change. That is why we call this 
vector the direction of vector . We can compute the value of  (Code Listing 3), and we find 
that its coordinates are  . 

Code Listing 3 

u = np.array([ 3, 4])  
w = direction(u)  
 
print (w) # [0.6 , 0.8]   

It is interesting to note is that if two vectors have the same direction, they will have the same 
direction vector (Code Listing 4). 

Code Listing 4 

u_1 = np.array([ 3, 4])  
u_2 = np.array([ 30, 40])  
 
print (direction(u_1)) # [0.6 , 0.8]  
print (direction(u_2)) # [0.6 , 0.8]  
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Moreover, the norm of a direction vector is always 1. We can verify that with the vector 
 (Code Listing 5). 

Code Listing 5 

np.linalg.norm( np.array( [ 0.6 , 0.8 ] ) ) # 1 .0  

It makes sense, as the sole objective of this vector is to describe the direction of other vectorsð
by having a norm of 1, it stays as simple as possible. As a result, a direction vector such as  is 
often referred to as a unit vector.  

Dimensions of a vector 

Note that the order in which the numbers are written is important. As a result, we say that a -
dimensional vector is a tuple of  real-valued numbers. 

For instance,  is a two-dimensional vector; we often write  (  belongs to  ). 

Similarly, the vector  is a three-dimensional vector, and . 

The dot product 

The dot product is an operation performed on two vectors that returns a number. A number is 
sometimes called a scalar; that is why the dot product is also called a scalar product. 

People often have trouble with the dot product because it seems to come out of nowhere. What 
is important is that it is an operation performed on two vectors and that its result gives us some 
insights into how the two vectors relate to each other. There are two ways to think about the dot 
product: geometrically and algebraically. 

Geometric definition of the dot product 

Geometrically, the dot product is the product of the Euclidean magnitudes of the two vectors 
and the cosine of the angle between them. 
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Figure 4: Two vectors x and y 

This means that if we have two vectors,  and , with an angle   between them (Figure 4), their 
dot product is: 

 

By looking at this formula, we can see that the dot product is strongly influenced by the angle :  

¶ When ,  we have    and    

¶ When , we have   and    

¶ When , we have   and    

Keep this in mindðit will be useful later when we study the Perceptron learning algorithm.  

We can write a simple Python function to compute the dot product using this definition (Code 
Listing 6) and use it to get the value of the dot product in Figure 4 (Code Listing 7). 

Code Listing 6 

import math 

import numpy as np 

 

def geometric_dot_product(x,y, theta):  

    x_norm = np.linalg.norm(x)  

    y_norm = np.linalg.norm(y)  
    return  x_norm *  y_norm *  math.cos(math.radians(theta))  

However, we need to know the value of  to be able to compute the dot product.  
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Code Listing 7 

theta = 45  

x = [ 3, 5]  
y = [ 8, 2]  

 

print (geometric_dot_product(x,y,theta))  # 34.0  

Algebraic definition of the dot product 

 

Figure 5: Using these three angles will allow us to simplify the dot product 

In Figure 5, we can see the relationship between the three angles ,  (beta), and   (alpha):  

 

This means computing  is the same as computing . 

Using the difference identity for cosine we get:  
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If we multiply both sides by  we get: 

 

We already know that: 

 

This means the dot product can also be written:  

 

Or: 

 

In a more general way, for -dimensional vectors, we can write:  

 

This formula is the algebraic definition of the dot product. 

Code Listing 8 

def dot_product(x,y):  

    result = 0 

    for i in range ( len (x)):  

        result = result + x[i]*y[i]  

    return result  

This definition is advantageous because we do not have to know the angle  to compute the dot 
product. We can write a function to compute its value (Code Listing 8) and get the same result 
as with the geometric definition (Code Listing 9). 

Code Listing 9 

x = [ 3, 5]  

y = [ 8, 2]  
print (dot_product(x,y)) # 34  

Of course, we can also use the dot function provided by numpy (Code Listing 10). 
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Code Listing 10 

import numpy as np 

 

x = np.array([ 3, 5])  
y = np.array([ 8, 2])  

 

print (np.dot(x,y)) # 34  

We spent quite some time understanding what the dot product is and how it is computed. This is 
because the dot product is a fundamental notion that you should be comfortable with in order to 
figure out what is going on in SVMs. We will now see another crucial aspect, linear separability.  

Understanding linear separability 

In this section, we will use a simple example to introduce linear separability. 

Linearly separable data 

Imagine you are a wine producer. You sell wine coming from two different production batches: 

¶ One high-end wine costing $145 a bottle. 
¶ One common wine costing $8 a bottle. 

Recently, you started to receive complaints from clients who bought an expensive bottle. They 
claim that their bottle contains the cheap wine. This results in a major reputation loss for your 
company, and customers stop ordering your wine. 

Using alcohol-by-volume to classify wine 

You decide to find a way to distinguish the two wines. You know that one of them contains more 
alcohol than the other, so you open a few bottles, measure the alcohol concentration, and plot it.  
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Figure 6: An example of linearly separable data 

In Figure 6, you can clearly see that the expensive wine contains less alcohol than the cheap 
one. In fact, you can find a point that separates the data into two groups. This data is said to be 
linearly separable. For now, you decide to measure the alcohol concentration of your wine 
automatically before filling an expensive bottle. If it is greater than 13 percent, the production 
chain stops and one of your employee must make an inspection. This improvement dramatically 
reduces complaints, and your business is flourishing again. 

This example is too easyðin reality, data seldom works like that. In fact, some scientists really 
measured alcohol concentration of wine, and the plot they obtained is shown in Figure 7. This is 
an example of non-linearly separable data. Even if most of the time data will not be linearly 
separable, it is fundamental that you understand linear separability well. In most cases, we will 
start from the linearly separable case (because it is the simpler) and then derive the non-
separable case. 

Similarly, in most problems, we will not work with only one dimension, as in Figure 6. Real-life 
problems are more challenging than toy examples, and some of them can have thousands of 
dimensions, which makes working with them more abstract. However, its abstractness does not 
make it more complex. Most examples in this book will be two-dimensional examples. They are 
simple enough to be easily visualized, and we can do some basic geometry on them, which will 
allow you to understand the fundamentals of SVMs. 
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Figure 7: Plotting alcohol by volume from a real dataset 

In our example of Figure 6, there is only one dimension: that is, each data point is represented 
by a single number. When there are more dimensions, we will use vectors to represent each 
data point. Every time we add a dimension, the object we use to separate the data changes. 
Indeed, while we can separate the data with a single point in Figure 6, as soon as we go into 
two dimensions we need a line (a set of points), and in three dimensions we need a plane 
(which is also a set of points). 

To summarize, data is linearly separable when: 

¶ In one dimension, you can find a point separating the data (Figure 6). 
¶ In two dimensions, you can find a line separating the data (Figure 8). 
¶ In three dimensions, you can find a plane separating the data (Figure 9). 

 
 

Figure 8: Data separated by a line Figure 9: Data separated by a plane 

Similarly, when data is non-linearly separable, we cannot find a separating point, line, or plane. 
Figure 10 and Figure 11 show examples of non-linearly separable data in two and three 
dimensions.  
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Figure 10: Non-linearly separable data in 2D Figure 11: Non-linearly separable data in 3D 

Hyperplanes  

What do we use to separate the data when there are more than three dimensions? We use 
what is called a hyperplane. 

What is a hyperplane? 

In geometry, a hyperplane is a subspace of one dimension less than its ambient space. 

This definition, albeit true, is not very intuitive. Instead of using it, we will try to understand what 
a hyperplane is by first studying what a line is. 

If you recall mathematics from school, you probably learned that a line has an equation of the 
form , that the constant   is known as the slope, and that  intercepts the y-axis. 
There are several values of  for which this formula is true, and we say that the set of the 
solutions is a line.  

What is often confusing is that if you study the function   in a calculus course, you 
will be studying a function with one variable.  

However, it is important to note that the linear equation  has two variables, 
respectively   and , and we can name them as we want.  
 
For instance, we can rename   as   and  as  , and the equation becomes:  .  

This is equivalent to . 

If we define the two-dimensional vectors   and , we obtain another notation 
for the equation of a line (where  is the dot product of  and ): 
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What is nice with this last equation is that it uses vectors. Even if we derived it by using two-
dimensional vectors, it works for vectors of any dimensions. It is, in fact, the equation of a 
hyperplane.  

From this equation, we can have another insight into what a hyperplane is: it is the set of points 
satisfying . And, if we keep just the essence of this definition: a hyperplane is a set 
of points.  
 
If we have been able to deduce the hyperplane equation from the equation of a line, it is 
because a line is a hyperplane. You can convince yourself by reading the definition of a 
hyperplane again. You will notice that, indeed, a line is a two-dimensional space surrounded by 
a plane that has three dimensions. Similarly, points and planes are hyperplanes, too. 

Understanding the hyperplane equation 

We derived the equation of a hyperplane from the equation of a line. Doing the opposite is 
interesting, as it shows us more clearly the relationship between the two.  

Given vectors ,  and  , we can define a hyperplane having the equation: 

 

This is equivalent to:  

 

 

We isolate  to get: 

 

If we define  and  : 

 

 

We see that the bias  of the line equation is only equal to the bias  of the hyperplane equation 
when . So you should not be surprised if  is not the intersection with the vertical axis 
when you see a plot for a hyperplane (this will be the case in our next example). Moreover, if  
and   have the same sign, the slope   will be negative.  
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Classifying data with a hyperplane 

 

Figure 12: A linearly separable dataset 

Given the linearly separable data of Figure 12, we can use a hyperplane to perform binary 
classification.  

For instance, with the vector  and  we get the hyperplane in Figure 13. 

 

Figure 13: A hyperplane separates the data 

We associate each vector   with a label  , which can have the value  or   (respectively the 
triangles and the stars in Figure 13).  
 
We define a hypothesis function : 

 

which is equivalent to: 
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It uses the position of  with respect to the hyperplane to predict a value for the label . Every 
data point on one side of the hyperplane will be assigned a label, and every data point on the 
other side will be assigned the other label. 

For instance, for ,  is above the hyperplane. When we do the calculation, we get  
, which is positive, so  .  

Similarly, for  ,  is below the hyperplane, and  will return   because 
. 

Because it uses the equation of the hyperplane, which produces a linear combination of the 
values, the function , is called a linear classifier.  

With one more trick, we can make the formula of  even simpler by removing the b constant. 
First, we add a component  to the vector . We get the vector 

  (it reads ñ hatò because we put a hat on ). Similarly, we add a component 
 to the vector , which becomes .  

 Note: In the rest of the book, we will call a vector to which we add an artificial 
coordinate an augmented vector.  

When we use augmented vectors, the hypothesis function becomes: 

 

If we have a hyperplane that separates the data set like the one in Figure 13, by using the 
hypothesis function , we are able to predict the label of every point perfectly.  
The main question is: how do we find such a hyperplane? 

How can we find a hyperplane (separating the data or not)? 

Recall that the equation of the hyperplane is  in augmented form. It is important to 
understand that the only value that impacts the shape of the hyperplane is . To convince you, 
we can come back to the two-dimensional case when a hyperplane is just a line. When we 
create the augmented three-dimensional vectors, we obtain   and . 
You can see that the vector  contains both  and  , which are the two main components 
defining the look of the line. Changing the value of  gives us different hyperplanes (lines), as 
shown in Figure 14.  
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Figure 14: Different values of w will give you different hyperplanes 

Summary 

After introducing vectors and linear separability, we learned what a hyperplane is and how we 
can use it to classify data. We then saw that the goal of a learning algorithm trying to learn a 
linear classifier is to find a hyperplane separating the data. Eventually, we discovered that 
finding a hyperplane is equivalent to finding a vector .  

We will now examine which approaches learning algorithms use to find a hyperplane that 
separates the data. Before looking at how SVMs do this, we will first look at one of the simplest 
learning models: the Perceptron.  
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Chapter 2  The Perceptron  

Presentation 

The Perceptron is an algorithm invented in 1957 by Frank Rosenblatt, a few years before the 
first SVM. It is widely known because it is the building block of a simple neural network: the 
multilayer perceptron. The goal of the Perceptron is to find a hyperplane that can separate a 
linearly separable data set. Once the hyperplane is found, it is used to perform binary 
classification. 

Given augmented vectors  and , the Perceptron uses the 
same hypothesis function we saw in the previous chapter to classify a data point :  

 

The Perceptron learning algorithm 

Given a training set  of  -dimensional training examples  , the Perceptron Learning 
Algorithm (PLA) tries to find a hypothesis function  that predicts the label  of every  
correctly.  

The hypothesis function of the Perceptron is , and we saw that  is just the 
equation of a hyperplane. We can then say that the set  of hypothesis functions is the set of 

 dimensional hyperplanes (  because a hyperplane has one dimension less than its 
ambient space). 

What is important to understand here is that the only unknown value is . It means that the goal 
of the algorithm is to find a value for . You find ; you have a hyperplane. There is an infinite 
number of hyperplanes (you can give any value to ), so there is an infinity of hypothesis 
functions. 

This can be written more formally this way:  

Given a training set:  and a set  of hypothesis functions. 

Find  such that   for every . 

This is equivalent to: 

Given a training set:   and a set  of hypothesis functions. 

Find  such that   for every . 
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The PLA is a very simple algorithm, and can be summarized this way: 

1. Start with a random hyperplane (defined by a vector ) and use it to classify the data.  
2. Pick a misclassified example and select another hyperplane by updating the value of , 

hoping it will work better at classifying this example (this is called the update rule).  
3. Classify the data with this new hyperplane. 
4. Repeat steps 2 and 3 until there is no misclassified example. 

Once the process is over, you have a hyperplane that separates the data.  
The algorithm is shown in Code Listing 11. 

Code Listing 11 

import numpy as np 
 
def perceptron_learning_algorithm(X, y):  
    w = np.random.rand( 3)   # can also be initialized at zero .  
    misclassified_examples = predict(hypothesis, X, y, w)  
 
    while misclassified_examples.any():  
        x, expected_y = pick_one_from(misclassified_examples, X, y)  
        w = w + x * expected_y  # update rule  
        misclassified_examples = predict(hypothesis, X, y, w)  
 
    return w 

Let us look at the code in detail. 

The perceptron_learning_algori thm uses several functions (Code Listing 12). The 

hypothesis  function is just  written in Python code; as we saw before, it is the function that 

returns the label  predicted for an example  when classifying with the hyperplane defined by 
. The predict  function applies the hypothesis for every example and returns the ones that 

are misclassified. 

Code Listing 12 

def hypothesis(x, w):  
    return np.sign(np.dot(w, x))  
 
 
# Make predictions on all data points  
# and return  the ones that  are misclassified .  
def predict(hypothesis_function, X, y, w):  
    predictions = np.apply_along_axis(hypothesis_function, 1, X, w)  
    misclassified = X[y != predictions]  
    return misclassified  

Once we have made predictions with predict , we know which examples are misclassified, so 

we use the function pick_one_from  to select one of them randomly (Code Listing 13). 
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Code Listing 13 

# Pick one misclassified example randomly  

# and return it with its expected label .  

def pick_one_from(misclassified_examples, X, y):  
    np.ran dom.shuffle(misclassified_examples)  

    x = misclassified_examples[ 0]  

    index = np.where(np.all(X == x, axis =1))  

    return x, y[index]  

We then arrive at the heart of the algorithm: the update rule. For now, just remember that it 
changes the value of . Why it does this will be explained in detail later. We once again use the 
predict  function, but this time, we give it the updated . It allows us to see if we have 

classified all data points correctly, or if we need to repeat the process until we do. 

Code Listing 14 demonstrates how we can use the perceptron_learning_algorithm  function 

with a toy data set. Note that we need the  and  vectors to have the same dimension, so we 
convert every   vector into an augmented vector before giving it to the function. 

Code Listing 14 

# See Appendix A for more information about the dataset  
from succinctly.datasets import get_dataset, linearly_separable as ls  
 
np.random.seed( 88)  

 

X, y = get_dataset( ls. get_training_examples)  
 
# transform X into an array of augmented vectors .  
X_augmented = np.c_[np.ones(X.shape[ 0]), X]  
 
w = perceptron_learning_algorithm(X_augmented, y)  
 
print (w) # [ - 44.35244895   1.50714969   5.52834138]  

Understanding the update rule 

Why do we use this particular update rule? Recall that we picked a misclassified example at 
random. Now we would like to make the Perceptron correctly classify this example. To do so, 
we decide to update the vector . The idea here is simple. Since the sign of the dot product 
between  and  is incorrect, by changing the angle between them, we can make it correct:  

¶ If the predicted label is 1, the angle between  and  is smaller than , and we want to 
increase it. 

¶ If the predicted label is -1, the angle between  and  is bigger than , and we want to 
decrease it. 
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Figure 15: Two vectors 

Letôs see what happens with two vectors,  and  , having an angle  between (Figure 15). 

On the one hand, adding them creates a new vector  and the angle  between   and  

is smaller than  (Figure 16).  

 

Figure 16: The addition creates a smaller angle 

On the other hand, subtracting them creates a new vector , and the angle  between  and 
 is bigger than  (Figure 17). 
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Figure 17: The subtraction creates a bigger angle 

We can use these two observations to adjust the angle:  

¶ If the predicted label is 1, the angle is smaller than . We want to increase the angle, 

so we set  . 

¶ If the predicted label is -1, the angle is bigger than . We want to decrease the angle, 

so we set  . 

As we are doing this only on misclassified examples, when the predicted label has a value, the 

expected label is the opposite. This means we can rewrite the previous statement: 

¶ If the expected label is -1: We want to increase the angle, so we set  . 

¶ If the expected label is +1: We want to decrease the angle, so we set  . 

When translated into Python it gives us Code Listing 15, and we can see that it is strictly 

equivalent to Code Listing 16, which is the update rule. 

Code Listing 15 

def update_rule(expected_y, w, x):  

    if expected_y == 1:  

        w = w + x  

    else :  

        w = w -  x 

    return w 
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Code Listing 16 

def update_rule(expected_y, w, x):  

    w = w + x * expected_y  

    return w 

We can verify that the update rule works as we expect by checking the value of the hypothesis 
before and after applying it (Code Listing 17). 

Code Listing 17 

import numpy as np 
 
def hypothesis(x, w):  
    return np.sign(np.dot(w, x))  
 
x = np.array([ 1, 2, 7])  
expected_y = - 1 
w = np.array([ 4, 5, 3])  
 
print (hypothesis(w, x))             # The predicted y is 1 .  
 
w = update_rule(expected_y, w, x)   # we apply the update rule .  
  
print (hypothesis(w, x))             # The predicted y is - 1.  

Note that the update rule does not necessarily change the sign of the hypothesis for the 
example the first time. Sometimes it is necessary to apply the update rule several times before it 
happens as shown in Code Listing 18. This is not a problem, as we are looping across 
misclassified examples, so we will continue to use the update rule until the example is correctly 
classified. What matters here is that each time we use the update rule, we change the value of 
the angle in the right direction (increasing it or decreasing it).  

Code Listing 18 

import  numpy as np 
 
x = np.array([ 1, 3])  
expected_y = - 1 
w = np.array([ 5, 3])  
 
print (hypothesis(w, x))            # The predicted y is 1 .  
 
w = update_rule(expected_y, w, x)  # we apply the update rule .  
 
print (hypothesis(w, x))            # The predicted y is 1 .  
 
w = update_rule(expected_y, w, x)  # we apply the update rule once again .  
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print (hypothesis(w, x))            # The predicted y is - 1.  

Also note that sometimes updating the value of  for a particular example  changes the 
hyperplane in such a way that another example  previously correctly classified becomes 
misclassified. So, the hypothesis might become worse at classifying after being updated. This is 
illustrated in Figure 18, which shows us the number of classified examples at each iteration 
step. One way to avoid this problem is to keep a record of the value of  before making the 
update and use the updated  only if it reduces the number of misclassified examples. This 
modification of the PLA is known as the Pocket algorithm (because we keep  in our pocket). 

 

Figure 18: The PLA update rule oscillates 

Convergence of the algorithm 

We said that we keep updating the vector  with the update rule until there is no misclassified 
point. But how can we be so sure that will ever happen? Luckily for us, mathematicians have 
studied this problem, and we can be very sure because the Perceptron convergence theorem 
guarantees that if the two sets P and N (of positive and negative examples respectively) are 
linearly separable, the vector  is updated only a finite number of times, which was first proved 
by Novikoff in 1963 (Rojas, 1996). 

Understanding the limitations of the PLA 

One thing to understand about the PLA algorithm is that because weights are randomly 
initialized and misclassified examples are randomly chosen, it is possible the algorithm will 
return a different hyperplane each time we run it. Figure 19 shows the result of running the PLA 
on the same dataset four times. As you can see, the PLA finds four different hyperplanes. 
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Figure 19: The PLA finds a different hyperplane each time 

At first, this might not seem like a problem. After all, the four hyperplanes perfectly classify the 
data, so they might be equally good, right? However, when using a machine learning algorithm 
such as the PLA, our goal is not to find a way to classify perfectly the data we have right now. 
Our goal is to find a way to correctly classify new data we will receive in the future. 

Let us introduce some terminology to be clear about this. To train a model, we pick a sample of 
existing data and call it the training set. We train the model, and it comes up with a hypothesis 
(a hyperplane in our case). We can measure how well the hypothesis performs on the training 
set: we call this the in-sample error (also called training error). Once we are satisfied with the 
hypothesis, we decide to use it on unseen data (the test set) to see if it indeed learned 
something. We measure how well the hypothesis performs on the test set, and we call this the 
out-of-sample error (also called the generalization error). 

Our goal is to have the smallest out-of-sample error.  
 
In the case of the PLA, all hypotheses in Figure 19 perfectly classify the data: their in-sample 
error is zero. But we are really concerned about their out-of-sample error. We can use a test set 
such as the one in Figure 20 to check their out-of-sample errors. 
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Figure 20: A test dataset 

As you can see in Figure 21, the two hypotheses on the right, despite perfectly classifying the 
training dataset, are making errors with the test dataset. 

Now we better understand why it is problematic. When using the Perceptron with a linearly 
separable dataset, we have the guarantee of finding a hypothesis with zero in-sample error, but 
we have no guarantee about how well it will generalize to unseen data (if an algorithm 
generalizes well, its out-of-sample error will be close to its in-sample error). How can we choose 
a hyperplane that generalizes well? As we will see in the next chapter, this is one of the goals of 
SVMs.  

 

Figure 21: Not all hypotheses have perfect out-of-sample error 
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Summary 

In this chapter, we have learned what a Perceptron is. We then saw in detail how the 
Perceptron Learning Algorithm works and what the motivation behind the update rule is. After 
learning that the PLA is guaranteed to converge, we saw that not all hypotheses are equal, and 
that some of them will generalize better than others. Eventually, we saw that the Perceptron is 
unable to select which hypothesis will have the smallest out-of-sample error and instead just 
picks one hypothesis having the lowest in-sample error at random. 
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Chapter 3  The SVM Optimization Problem 

SVMs search for the optimal hyperplane 

The Perceptron has several advantages: it is a simple model, the algorithm is very easy to 
implement, and we have a theoretical proof that it will find a hyperplane that separates the data. 
However, its biggest weakness is that it will not find the same hyperplane every time. Why do 
we care? Because not all separating hyperplanes are equals. If the Perceptron gives you a 
hyperplane that is very close to all the data points from one class, you have a right to believe 
that it will generalize poorly when given new data.  
 
SVMs do not have this problem. Indeed, instead of looking for a hyperplane, SVMs tries to find 
the hyperplane. We will call this the optimal hyperplane, and we will say that it is the one that 
best separates the data. 

How can we compare two hyperplanes? 

Because we cannot choose the optimal hyperplane based on our feelings, we need some sort 
of metric that will allow us to compare two hyperplanes and say which one is superior to all 
others.  

In this section, we will try to discover how we can compare two hyperplanes. In other words, we 
will search for a way to compute a number that allows us to tell which hyperplane separates the 
data the best. We will look at methods that seem to work, but then we will see why they do not 
work and how we can correct their limitations. Let us try with a simple attempt to compare two 
hyperplanes using only the equation of the hyperplane.  

Using the equation of the hyperplane 

Given an example  and a hyperplane, we wish to know how the example relates to the 
hyperplane.  
 
One key element we already know is that if the value of  satisfies the equation of a line, then it 
means it is on the line. It works in the same way for a hyperplane: for a data point  and a 
hyperplane defined by a vector  and bias , we will get    if  is on the hyperplane.  
 
But what if the point is not on the hyperplane?  

Let us see what happens with an example. In Figure 22, the line is defined by   
and . When we use the equation of the hyperplane: 

¶ for point , using vector   we get    
¶ for point , using vector   we get    
¶ for point , using vector   we get    
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Figure 22: The equation returns a bigger number for A than for B 

As you can see, when the point is not on the hyperplane we get a number different from zero. In 
fact, if we use a point far away from the hyperplane, we will get a bigger number than if we use 
a point closer to the hyperplane. 

Another thing to notice is that the sign of the number returned by the equation tells us where the 
point stands with respect to the line. Using the equation of the line displayed in Figure 23, we 
get: 

¶  for point  

¶  for point  

¶  for point  

 

Figure 23: The equation returns a negative number for C 

If the equation returns a positive number, the point is below the line, while if it is a negative 
number, it is above. Note that it is not necessarily visually above or below, because if you have 
a line like the one in Figure 24, it will be left or right, but the same logic applies. The sign of the 
number returned by the equation of the hyperplane allows us to tell if two points lie on the same 
side. In fact, this is exactly what the hypothesis function we defined in Chapter 2 does. 
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Figure 24: A line can separate the space in different ways 

We now have the beginning of a solution for comparing two hyperplanes. 

Given a training example  and a hyperplane defined by a vector  and bias , we compute 
the number   to know how far the point is from the hyperplane.  

Given a data set  , we compute   for each training example, 
and say that the number  is the smallest   we encounter.  

 

If we need to choose between two hyperplanes, we will then select the one from which  is the 
largest. 

To be clear, this means that if we have  hyperplanes, we will compute    and select the 

hyperplane having this . 

Problem with examples on the negative side 

Unfortunately, using the result of the hyperplane equation has its limitations. The problem is that 
taking the minimum value does not work for examples on the negative side (the ones for which 
the equation returns a negative value). 

Remember that we always wish to take the  of the point being the closest to the hyperplane. 
Computing  with examples on the positive side actually does this. Between two points with  

  and  , we pick the one having the smallest number, so we choose . However, 
between two examples having  and , this rule will pick   because   is smaller 
than , but the closest point is actually the one with .  
 
One way to fix this problem is to consider the absolute value of .  

Given a data set , we compute  for each example and say that  is the  having the smallest 
absolute value: 
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Does the hyperplane correctly classify the data? 

Computing the number  allows us to select a hyperplane. However, using only this value, we 
might pick the wrong one. Consider the case in Figure 25: the examples are correctly 
classified, and the value of  computed using the last formula is 2.  

 

Figure 25: A hyperplane correctly classifying the data 

In Figure 26, the examples are incorrectly classified, and the value of  is also 2. This is 
problematic because using , we do not know which hyperplane is better. In theory, they look 
equally good, but in reality, we want to pick the one from Figure 25.  

 

Figure 26: A hyperplane that does not classify the data correctly 

How can we adjust our formula to meet this requirement?  

Well, there is one component of our training example  that we did not use: the  !  
 
If we multiply   by the value of , we change its sign. Let us call this new number : 

 

 

The sign of  will always be: 

¶ Positive if the point is correctly classified 
¶ Negative if the point is incorrectly classified 
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Given a data set , we can compute:  

 

 

With this formula, when comparing two hyperplanes, we will still select the one for which  is the 
largest. The added bonus is that in special cases like the ones in Figure 25 and Figure 26, we 
will always pick the hyperplane that classifies correctly (because  will have a positive value, 
while its value will be negative for the other hyperplane). 

In the literature, the number  has a name, it is called the functional margin of an example; its 
value can be computed in Python, as shown in Code Listing 19. Similarly, the number  is 
known as the functional margin of the data set .  

Code Listing 19 

# Compute the functional margin of an example (x,y)  

# with respect to  a hyperplane defined by w and b .  

def example_functional_margin(w, b, x, y):  

    result = y * (np.dot(w, x) + b)  

    return result  

 

# Compute the functional margin of a hyperplane  

# for examples X with labels y .  

def functional_margin(w, b, X, y):  

    return np.min([example_functional_margin(w, b, x, y[i])  
                  for i, x in enumerate (X)])  

Using this formula, we find that the functional margin of the hyperplane in Figure 25 is +2, while 
in Figure 26 it is -2. Because it has a bigger margin, we will select the first one.  

 Tip: Remember, we wish to choose the hyperplane with the largest margin.  

Scale invariance  

It looks like we found a good way to compare the two hyperplanes this time. However, there is a 
major problem with the functional margin: is not scale invariant.  
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Given a vector  and bias , if we multiply them by 10, we get  and 
. We say we rescaled them.  

 
The vectors   and , represent the same hyperplane because they have the same unit 
vector. The hyperplane being a plane orthogonal to a vector , it does not matter how long the 
vector is. The only thing that matters is its direction, which, as we saw in the first chapter, is 
given by its unit vector. Moreover, when tracing the hyperplane on a graph, the coordinate of the 
intersection between the vertical axis and the hyperplane will be  , so the hyperplane 
does not change because of the rescaling of , either. 

The problem, as we can see in Code Listing 20, is that when we compute the functional margin 
with , we get a number ten times bigger than with . This means that given any hyperplane, 
we can always find one that will have a larger functional margin, just by rescaling  and .  

Code Listing 20 

x = np.array([ 1, 1])  
y = 1 
 
b_1 = 5 
w_1 = np.array([ 2, 1])  
 
w_2 = w_1 * 10 
b_2 = b_1 * 10 
 
print (example_functional_margin(w_1, b_1, x, y))  # 8  
print (example_functional_margin(w_2, b_2, x, y))  # 80  

To solve this problem, we only need to make a small adjustment. Instead of using the vector , 
we will use its unit vector. To do so, we will divide  by its norm. In the same way, we will divide 
 by the norm of  to make it scale invariant as well. 

Recall the formula of the functional margin:    

We modify it and obtain a new number :  

  

As before, given a data set , we can compute: 

 

 

The advantage of  is that it gives us the same number no matter how large is the vector   that 
we choose. The number  also has a nameðit is called the geometric margin of a training 
example, while  is the geometric margin of the dataset. A Python implementation is shown in 
Code Listing 21. 
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Code Listing 21 

# Compute the geometric margin of an example (x,y)  
# with respect to  a hyperplane defined by w and b .  
def example_geometric_margin(w, b, x, y):  
    norm = np.linalg.norm(w)  
    result = y * (np.dot(w/norm, x) + b/norm)  
    return result  
 
# Compute the geometric margin of a hyperplane  
# for examples X with labels y .  
def geometric_margin(w, b, X, y):  
    return np.min([example_geometric_margin(w, b, x, y[i])  
                  f or i, x in enumerate (X)])  

We can verify that the geometric margin behaves as expected. In Code Listing 22, the function 
returns the same value for the vector  or its rescaled version . 

Code Listing 22 

x = np.array([ 1, 1])  
y = 1 
 
b_1 = 5 
w_1 = np.array([ 2, 1])  
 
w_2 = w_1*10 
b_2 = b_1* 10 
 
print (example_geometric_margin(w_1, b_1, x, y))  # 3.577708764  
print (example_geometric_margin(w_2, b_2, x, y))  # 3.577708764  

It is called the geometric margin because we can retrieve this formula using simple geometry. It 
measures the distance between  and the hyperplane.  

In Figure 27, we see that the point  is the orthogonal projection of  into the hyperplane. We 
wish to find the distance  between  and .  
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Figure 27: The geometric margin is the distance d between the point X and the hyperplane 

The vector  has the same direction as the vector , so they share the same unit vector . We 

know that the norm of  is , so the vector  can be defined by  .  

Moreover, we can see that , so if we substitute for  and do a little bit of algebra, we 
get:  

 

Now, the point  is on the hyperplane. It means that  satisfies the equation of the hyperplane, 
and we have: 
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Eventually, as we did before, we multiply by  to ensure that we select a hyperplane that 
correctly classifies the data, and it gives us the geometric margin formula we saw earlier:  

 

 

Figure 28: A hyperplane defined by w=(-0.4,-1) 
and b=8 

 

Figure 29: A hyperplane defined by w=(-0.4,-1) 
and b=8.5 

Now that we have defined the geometric margin, let us see how it allows us to compare two 
hyperplanes. We can see that the hyperplane in Figure 28 is closer to the blue star examples 
than to the red triangle examples as compared to the one in Figure 29. As a result, we expect its 
geometric margin to be smaller. Code Listing 23 uses the function defined in Code Listing 21 to 
compute the geometric margin for each hyperplane. As expected from Figure 29, the geometric 
margin of the second hyperplane defined by  and   is larger (0.64 > 0.18). 
Between the two, we would select this hyperplane. 

Code Listing 23 

# Compare two hyperplanes using the geometrical margin .  
 
positive_x = [[ 2, 7],[ 8, 3],[ 7, 5],[ 4, 4],[ 4, 6],[ 1, 3],[ 2, 5]]  
negative_x = [[ 8, 7],[ 4, 10],[ 9, 7],[ 7, 10],[ 9, 6],[ 4, 8],[ 10, 10]]  
 
X = np.vstack((positive_x, negative_x))  
y = np.hstack((np.ones( len (positive_x)), - 1*np.ones( len (negative_x))))  
 
w = np.array([ - 0.4 , - 1])  
b = 8 
 
# change the value of b  
print (geometric_margin(w, b, X, y))          # 0.185695338177  
print (geometric_margin(w, 8.5 , X, y))        # 0.64993368362  
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We see that to compute the geometric margin for another hyperplane, we just need to modify 
the value of  or . We could try to change it by a small increment to see if the margin gets 
larger, but it is kind of random, and it would take a lot of time. Our objective is to find the optimal 
hyperplane for a dataset among all possible hyperplanes, and there is an infinity of 
hyperplanes.  

 Tip: Finding the optimal hyperplane is just a matter of finding the values of w and b 
for which we get the largest geometric margin. 

How can we find the value of  that produces the largest geometric margin? Luckily for us, 
mathematicians have designed tools to solve such problems. To find  and , we need to solve 
what is called an optimization problem. Before looking at what the optimization problem is for 
SVMs, let us do a quick review of what an optimization problem is. 

What is an optimization problem? 

Unconstrained optimization problem 

The goal of an optimization problem is to minimize or maximize a function with respect to 
some variable x (that is, to find the value of x for with the function returns its minimum or 
maximum value). For instance, the problem in which we want to find the minimum of the 

function   is written: 

 

Or, alternatively:  

 

In this case, we are free to search amongst all possible values of . We say that the problem is 
unconstrained. As we can see in Figure 30, the minimum of the function is zero at .  
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Figure 30: Without constraint,  
the minimum is zero 

 

Figure 31: Because of the constraint x-2=0,  
the minimum is 4 

Constrained optimization problem 

Single equality constraint 

Sometimes we are not interested in the minimum of the function by itself, but rather its minimum 
when some constraints are met. In such cases, we write the problem and add the constraints 
preceded by  , which is often abbreviated   For instance, if we wish to know the 
minimum of  but restrict the value of  to a specific value, we can write:  

 

This example is illustrated in Figure 31. In general, constraints are written by keeping zero on 
the right side of the equality so the problem can be rewritten: 

 

Using this notation, we clearly see that the constraint is an affine function while the objective 
function  is a quadratic function. Thus we call this problem a quadratic optimization 
problem or a Quadratic Programming (QP) problem. 
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Feasible set 

The set of variables that satisfies the problem constraints is called the feasible set (or feasible 
region). When solving the optimization problem, the solution will be picked from the feasible set. 
In Figure 31, the feasible set contains only one value, so the problem is trivial. However, when 

we manipulate functions with several variables, such as , it allows us to know 
from which values we are trying to pick a minimum (or maximum).  

For example: 

 

In this problem, the feasible set is the set of all pairs of points , such as . 

Multiple equality constraints and vector notation 

We can add as many constraints as we want. Here is an example of a problem with three 

constraints for the function : 

 

When we have several variables, we can switch to vector notation to improve readability. For 

the vector   the function becomes  , and the problem is written:  

 

When adding constraints, keep in mind that doing so reduces the feasible set. For a solution to 
be accepted, all constraints must be satisfied.  

For instance, let us look at the following the problem:   

 

We could think that  and  are solutions, but this is not the case. When , the 
constraint  is not met; and when , the constraint  is not met. The problem 
is infeasible. 
































































































































